Some APN functions CCZ-equivalent to x^3 + tr n(x^9) and CCZ-inequivalent to the Gold functions over GF(2^n)

From Boolean
Revision as of 09:15, 11 February 2019 by Fady (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Some APN functions CCZ-equivalent to [math]\displaystyle{ x^3+tr_{n}(x^9) }[/math] and CCZ-inequivalent to the Gold functions over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math] (constructed in [1])

[math]\displaystyle{ N^\circ }[/math] Functions Conditions [math]\displaystyle{ d^\circ }[/math]
[math]\displaystyle{ 1 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x)tr_n(x^3+x^9) }[/math] [math]\displaystyle{ n\geqslant5 }[/math] odd, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 2 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x+1)tr_n(x^3) }[/math] [math]\displaystyle{ n\geqslant4 }[/math] even, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 3 }[/math] [math]\displaystyle{ \Big(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\Big)^3+ }[/math] [math]\displaystyle{ tr_n\Big(\left(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\right)^9\Big) }[/math] [math]\displaystyle{ 6|n }[/math], [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 4 }[/math]
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ \left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}+tr_n\left(\left(\left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}\right)^{9}\right) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ n }[/math] odd [math]\displaystyle{ 4 }[/math]
  1. Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.