Some APN functions CCZ-equivalent to x^3 + tr n(x^9) and CCZ-inequivalent to the Gold functions over GF(2^n): Difference between revisions

From Boolean
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Some APN functions CCZ-equivalent to <math>x^3+tr_{n}(x^9)</math> and CCZ-inequivalent to the Gold functions over <math>\mathbb{F}_{2^n}</math> (constructed in <ref>Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.</ref>)
Some APN functions CCZ-equivalent to <math>x^3+tr_{n}(x^9)</math> and CCZ-inequivalent to the Gold functions over <math>\mathbb{F}_{2^n}</math><ref>L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150-159, April 2009. https://doi.org/10.1016/j.ffa.2008.10.001</ref>.


<table>
<table>

Revision as of 17:21, 9 July 2020

Some APN functions CCZ-equivalent to [math]\displaystyle{ x^3+tr_{n}(x^9) }[/math] and CCZ-inequivalent to the Gold functions over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math][1].

[math]\displaystyle{ N^\circ }[/math] Functions Conditions [math]\displaystyle{ d^\circ }[/math]
[math]\displaystyle{ 1 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x)tr_n(x^3+x^9) }[/math] [math]\displaystyle{ n\geqslant5 }[/math] odd, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 2 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x+1)tr_n(x^3) }[/math] [math]\displaystyle{ n\geqslant4 }[/math] even, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 3 }[/math] [math]\displaystyle{ \Big(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\Big)^3+ }[/math] [math]\displaystyle{ tr_n\Big(\left(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\right)^9\Big) }[/math] [math]\displaystyle{ 6|n }[/math], [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 4 }[/math]
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ \left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}+tr_n\left(\left(\left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}\right)^{9}\right) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ n }[/math] odd [math]\displaystyle{ 4 }[/math]
  1. L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150-159, April 2009. https://doi.org/10.1016/j.ffa.2008.10.001