Some APN functions CCZ-equivalent to x^3 + tr n(x^9) and CCZ-inequivalent to the Gold functions over GF(2^n)

From Boolean
Revision as of 17:21, 9 July 2020 by Nikolay (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Some APN functions CCZ-equivalent to [math]\displaystyle{ x^3+tr_{n}(x^9) }[/math] and CCZ-inequivalent to the Gold functions over [math]\displaystyle{ \mathbb{F}_{2^n} }[/math][1].

[math]\displaystyle{ N^\circ }[/math] Functions Conditions [math]\displaystyle{ d^\circ }[/math]
[math]\displaystyle{ 1 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x)tr_n(x^3+x^9) }[/math] [math]\displaystyle{ n\geqslant5 }[/math] odd, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 2 }[/math] [math]\displaystyle{ x^3+tr_n(x^9)+(x^2+x+1)tr_n(x^3) }[/math] [math]\displaystyle{ n\geqslant4 }[/math] even, [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 3 }[/math]
[math]\displaystyle{ 3 }[/math] [math]\displaystyle{ \Big(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\Big)^3+ }[/math] [math]\displaystyle{ tr_n\Big(\left(x+tr_n^3(x^6+x^{12})+tr_n(x)tr_n^3(x^3+x^{12})\right)^9\Big) }[/math] [math]\displaystyle{ 6|n }[/math], [math]\displaystyle{ \gcd(i,n)=1 }[/math] [math]\displaystyle{ 4 }[/math]
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ \left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}+tr_n\left(\left(\left(x^{\frac{1}{3}}+tr_n^3(x+x^4)\right)^{-1}\right)^{9}\right) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ n }[/math] odd [math]\displaystyle{ 4 }[/math]
  1. L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150-159, April 2009. https://doi.org/10.1016/j.ffa.2008.10.001