Difference between revisions of "Some APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions over GF(2^n)"

From Boolean Functions
Jump to: navigation, search
m
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Some APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions over<math>\mathbb{F}_{2^n}</math> (constructed in <ref>Budaghyan L, Carlet C, Pott A. New classes of almost bent and almost perfect nonlinear polynomials. IEEE Transactions on Information Theory. 2006 Mar;52(3):1141-52.</ref>)
+
Some APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions over<math>\mathbb{F}_{2^n}</math><ref>L. Budaghyan, C.Carlet, A. Pott. New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theoery, vol. 52, no. 3, pp. 1141-1152, 2006. https://doi.org/10.1109/TIT.2005.864481</ref>.
  
 
<table>
 
<table>
Line 8: Line 8:
 
</tr>
 
</tr>
  
<td><math>x^{2^i+1}+(x^{2^i}+x+tr_n(1)+1)tr_n(x^{2^i+1}+x\ tr_n(1))</math></td>
+
<td><math>x^{2^i+1}+(x^{2^i}+x+{\mathrm Tr}_n(1)+1){\mathrm Tr}_n(x^{2^i+1}+x\ {\mathrm Tr}_n(1))</math></td>
 
<td><math>n\geqslant4</math>, <math>\gcd(i,n)=1</math></td>
 
<td><math>n\geqslant4</math>, <math>\gcd(i,n)=1</math></td>
 
<td><math>3</math></td>
 
<td><math>3</math></td>
Line 14: Line 14:
  
 
<tr>
 
<tr>
<td><math>[x+tr_{n/3}(x^{2(2^i+1)}+x^{4(2^i+1)})+tr_n(x)tr_{n/3}(x^{2^i+1}+x^{2^{2i}(2^i+1)})]^{2^i+1}</math></td>
+
<td><math>[x+{\mathrm Tr}_n^3(x^{2(2^i+1)}+x^{4(2^i+1)})+{\mathrm Tr}_n(x){\mathrm Tr}_n^3(x^{2^i+1}+x^{2^{2i}(2^i+1)})]^{2^i+1}</math></td>
 
<td><math>6|n\ , \gcd(i,n)=1</math></td>
 
<td><math>6|n\ , \gcd(i,n)=1</math></td>
 
<td><math>4</math></td>
 
<td><math>4</math></td>
Line 20: Line 20:
  
 
<tr>
 
<tr>
<td><math>x^{2^i+1}+tr_{n/m}(x^{2^i+1})+x^{2^i}tr_{n/m}(x)+x \ tr_{n/m}(x)^{2^i}</math>
+
<td><math>x^{2^i+1}+{\mathrm Tr}_n^m(x^{2^i+1})+x^{2^i}{\mathrm Tr}_n^m(x)+x \ {\mathrm Tr}_n^m(x)^{2^i}</math>
<math>+[tr_{n/m}(x)^{2^i+1}+tr_{n/m}(x^{2^i+1})+tr_{n/m}(x)]^{\frac{1}{2^i+1}}(x^{2^i}+tr_{n/m}(x)^{2^i}+1)</math>
+
<math>+[{\mathrm Tr}_n^m(x)^{2^i+1}+{\mathrm Tr}_n^m(x^{2^i+1})+{\mathrm Tr}_n^m(x)]^{\frac{1}{2^i+1}}(x^{2^i}+{\mathrm Tr}_n^m(x)^{2^i}+1)</math>
<math>+[tr_{n/m}(x)^{2^i+1}+tr_{n/m}(x^{2^i+1})+tr_{n/m}(x)]^{\frac{2^i}{2^i+1}}(x+tr_{n/m}(x))</math></td>
+
<math>+[{\mathrm Tr}_n^m(x)^{2^i+1}+{\mathrm Tr}_n^m(x^{2^i+1})+{\mathrm Tr}_n^m(x)]^{\frac{2^i}{2^i+1}}(x+{\mathrm Tr}_n^m(x))</math></td>
 
<td><math>\ m\ne n\ , n\ odd\ , m|n\ , \gcd(i,n)=1\ </math></td>
 
<td><math>\ m\ne n\ , n\ odd\ , m|n\ , \gcd(i,n)=1\ </math></td>
 
<td><math>\ m+2\ </math></td>
 
<td><math>\ m+2\ </math></td>
 
</tr>
 
</tr>
 
</table>
 
</table>

Latest revision as of 21:09, 10 July 2020

Some APN functions CCZ-equivalent to Gold functions and EA-inequivalent to power functions over[1].

Functions Conditions
,

  1. L. Budaghyan, C.Carlet, A. Pott. New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theoery, vol. 52, no. 3, pp. 1141-1152, 2006. https://doi.org/10.1109/TIT.2005.864481