Difference between revisions of "Lower bounds on APN-distance for all known APN functions in dimension 8"

From Boolean Functions
Jump to: navigation, search
Line 3: Line 3:
 
<tr>
 
<tr>
 
<td>1</td>
 
<td>1</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>2</td>
 
<td>2</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>3</td>
 
<td>3</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>4</td>
 
<td>4</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>5</td>
 
<td>5</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>6</td>
 
<td>6</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>7</td>
 
<td>7</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>8</td>
 
<td>8</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>9</td>
 
<td>9</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>10</td>
 
<td>10</td>
<td><math>\{ 99^{12}, 111^{10}, 117^{48}, 123^{40}, 129^{64}, 135^{44}, 141^{16}, 147^{20}, 159, 256 \}</math></td>
+
<td> 99<sup>12</sup>, 111<sup>10</sup>, 117<sup>48</sup>, 123<sup>40</sup>, 129<sup>64</sup>, 135<sup>44</sup>, 141<sup>16</sup>, 147<sup>20</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>11</td>
 
<td>11</td>
<td><math>\{ 105^{8}, 111^{20}, 117^{48}, 123^{48}, 129^{48}, 135^{48}, 141^{16}, 147^{8}, 153^{8}, 159^{3}, 256 \}</math></td>
+
<td> 105<sup>8</sup>, 111<sup>20</sup>, 117<sup>48</sup>, 123<sup>48</sup>, 129<sup>48</sup>, 135<sup>48</sup>, 141<sup>16</sup>, 147<sup>8</sup>, 153<sup>8</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>12</td>
 
<td>12</td>
<td><math>\{ 105^{16}, 111^{18}, 117^{32}, 123^{56}, 129^{48}, 135^{36}, 141^{32}, 147^{16}, 159, 256 \}</math></td>
+
<td> 105<sup>16</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>56</sup>, 129<sup>48</sup>, 135<sup>36</sup>, 141<sup>32</sup>, 147<sup>16</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>13</td>
 
<td>13</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>14</td>
 
<td>14</td>
<td><math>\{ 99^{3}, 105^{8}, 111^{25}, 117^{36}, 123^{42}, 129^{52}, 135^{46}, 141^{28}, 147^{11}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>25</sup>, 117<sup>36</sup>, 123<sup>42</sup>, 129<sup>52</sup>, 135<sup>46</sup>, 141<sup>28</sup>, 147<sup>11</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>15</td>
 
<td>15</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>16</td>
 
<td>16</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>17</td>
 
<td>17</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>18</td>
 
<td>18</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>19</td>
 
<td>19</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>20</td>
 
<td>20</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>21</td>
 
<td>21</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>22</td>
 
<td>22</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>23</td>
 
<td>23</td>
<td><math>\{ 111^{85}, 135^{170}, 256 \}</math></td>
+
<td> 111<sup>85</sup>, 135<sup>170</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>24</td>
 
<td>24</td>
<td><math>\{ 99, 105^{11}, 111^{19}, 117^{42}, 123^{48}, 129^{48}, 135^{44}, 141^{22}, 147^{15}, 153^{5}, 256 \}</math></td>
+
<td> 99, 105<sup>11</sup>, 111<sup>19</sup>, 117<sup>42</sup>, 123<sup>48</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>22</sup>, 147<sup>15</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>25</td>
 
<td>25</td>
<td><math>\{ 93, 99^{6}, 105^{7}, 111^{16}, 117^{34}, 123^{50}, 129^{54}, 135^{46}, 141^{29}, 147^{8}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>6</sup>, 105<sup>7</sup>, 111<sup>16</sup>, 117<sup>34</sup>, 123<sup>50</sup>, 129<sup>54</sup>, 135<sup>46</sup>, 141<sup>29</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>26</td>
 
<td>26</td>
<td><math>\{ 99^{6}, 105^{5}, 111^{19}, 117^{38}, 123^{50}, 129^{56}, 135^{36}, 141^{26}, 147^{16}, 153^{3}, 256 \}</math></td>
+
<td> 99<sup>6</sup>, 105<sup>5</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>36</sup>, 141<sup>26</sup>, 147<sup>16</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>27</td>
 
<td>27</td>
<td><math>\{ 99^{4}, 111^{43}, 123^{98}, 135^{88}, 147^{18}, 159^{4}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 111<sup>43</sup>, 123<sup>98</sup>, 135<sup>88</sup>, 147<sup>18</sup>, 159<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>28</td>
 
<td>28</td>
<td><math>\{ 93, 99^{2}, 105^{7}, 111^{20}, 117^{39}, 123^{46}, 129^{62}, 135^{42}, 141^{15}, 147^{16}, 153^{3}, 159, 165, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>20</sup>, 117<sup>39</sup>, 123<sup>46</sup>, 129<sup>62</sup>, 135<sup>42</sup>, 141<sup>15</sup>, 147<sup>16</sup>, 153<sup>3</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>29</td>
 
<td>29</td>
<td><math>\{ 93, 99^{2}, 105^{9}, 111^{21}, 117^{32}, 123^{54}, 129^{52}, 135^{40}, 141^{31}, 147^{8}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>21</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>31</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>30</td>
 
<td>30</td>
<td><math>\{ 87, 93^{2}, 99, 105^{7}, 111^{22}, 117^{32}, 123^{48}, 129^{54}, 135^{47}, 141^{30}, 147^{7}, 153^{3}, 159, 256 \}</math></td>
+
<td> 87, 93<sup>2</sup>, 99, 105<sup>7</sup>, 111<sup>22</sup>, 117<sup>32</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>47</sup>, 141<sup>30</sup>, 147<sup>7</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>31</td>
 
<td>31</td>
<td><math>\{ 99^{4}, 105^{5}, 111^{22}, 117^{34}, 123^{54}, 129^{64}, 135^{30}, 141^{22}, 147^{14}, 153^{3}, 159^{3}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>22</sup>, 117<sup>34</sup>, 123<sup>54</sup>, 129<sup>64</sup>, 135<sup>30</sup>, 141<sup>22</sup>, 147<sup>14</sup>, 153<sup>3</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>32</td>
 
<td>32</td>
<td><math>\{ 93, 99^{4}, 105^{10}, 111^{11}, 117^{42}, 123^{54}, 129^{44}, 135^{44}, 141^{29}, 147^{14}, 153^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>10</sup>, 111<sup>11</sup>, 117<sup>42</sup>, 123<sup>54</sup>, 129<sup>44</sup>, 135<sup>44</sup>, 141<sup>29</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>33</td>
 
<td>33</td>
<td><math>\{ 93, 99^{2}, 105^{7}, 111^{23}, 117^{36}, 123^{50}, 129^{52}, 135^{40}, 141^{27}, 147^{12}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>23</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>27</sup>, 147<sup>12</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>34</td>
 
<td>34</td>
<td><math>\{ 93, 99^{3}, 105^{10}, 111^{19}, 117^{30}, 123^{52}, 129^{56}, 135^{44}, 141^{25}, 147^{9}, 153^{6}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>30</sup>, 123<sup>52</sup>, 129<sup>56</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>35</td>
 
<td>35</td>
<td><math>\{ 99^{3}, 105^{7}, 111^{21}, 117^{38}, 123^{52}, 129^{52}, 135^{40}, 141^{26}, 147^{9}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>21</sup>, 117<sup>38</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>26</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>36</td>
 
<td>36</td>
<td><math>\{ 99^{2}, 105^{7}, 111^{23}, 117^{38}, 123^{52}, 129^{52}, 135^{38}, 141^{26}, 147^{10}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>23</sup>, 117<sup>38</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>38</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>37</td>
 
<td>37</td>
<td><math>\{ 93^{3}, 99^{5}, 105^{17}, 111^{18}, 117^{28}, 123^{42}, 129^{48}, 135^{44}, 141^{25}, 147^{17}, 153^{7}, 159, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99<sup>5</sup>, 105<sup>17</sup>, 111<sup>18</sup>, 117<sup>28</sup>, 123<sup>42</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>17</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>38</td>
 
<td>38</td>
<td><math>\{ 99^{3}, 105^{3}, 111^{24}, 117^{42}, 123^{50}, 129^{56}, 135^{36}, 141^{22}, 147^{11}, 153^{5}, 159^{3}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>3</sup>, 111<sup>24</sup>, 117<sup>42</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>36</sup>, 141<sup>22</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>39</td>
 
<td>39</td>
<td><math>\{ 99, 105^{11}, 111^{17}, 117^{42}, 123^{52}, 129^{48}, 135^{44}, 141^{22}, 147^{11}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 99, 105<sup>11</sup>, 111<sup>17</sup>, 117<sup>42</sup>, 123<sup>52</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>22</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>40</td>
 
<td>40</td>
<td><math>\{ 93^{2}, 99^{2}, 105^{8}, 111^{23}, 117^{28}, 123^{48}, 129^{60}, 135^{46}, 141^{26}, 147^{6}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>23</sup>, 117<sup>28</sup>, 123<sup>48</sup>, 129<sup>60</sup>, 135<sup>46</sup>, 141<sup>26</sup>, 147<sup>6</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>41</td>
 
<td>41</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{9}, 111^{12}, 117^{38}, 123^{56}, 129^{52}, 135^{42}, 141^{24}, 147^{13}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>12</sup>, 117<sup>38</sup>, 123<sup>56</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>24</sup>, 147<sup>13</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>42</td>
 
<td>42</td>
<td><math>\{ 93, 99^{4}, 105^{8}, 111^{16}, 117^{34}, 123^{58}, 129^{52}, 135^{38}, 141^{29}, 147^{10}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>8</sup>, 111<sup>16</sup>, 117<sup>34</sup>, 123<sup>58</sup>, 129<sup>52</sup>, 135<sup>38</sup>, 141<sup>29</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>43</td>
 
<td>43</td>
<td><math>\{ 105^{10}, 111^{28}, 117^{34}, 123^{46}, 129^{50}, 135^{42}, 141^{30}, 147^{10}, 153^{4}, 159, 256 \}</math></td>
+
<td> 105<sup>10</sup>, 111<sup>28</sup>, 117<sup>34</sup>, 123<sup>46</sup>, 129<sup>50</sup>, 135<sup>42</sup>, 141<sup>30</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>44</td>
 
<td>44</td>
<td><math>\{ 93^{3}, 99, 105^{6}, 111^{21}, 117^{38}, 123^{46}, 129^{56}, 135^{42}, 141^{23}, 147^{17}, 153^{2}, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99, 105<sup>6</sup>, 111<sup>21</sup>, 117<sup>38</sup>, 123<sup>46</sup>, 129<sup>56</sup>, 135<sup>42</sup>, 141<sup>23</sup>, 147<sup>17</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>45</td>
 
<td>45</td>
<td><math>\{ 93, 99^{3}, 105^{7}, 111^{25}, 117^{34}, 123^{42}, 129^{54}, 135^{46}, 141^{29}, 147^{11}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>25</sup>, 117<sup>34</sup>, 123<sup>42</sup>, 129<sup>54</sup>, 135<sup>46</sup>, 141<sup>29</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>46</td>
 
<td>46</td>
<td><math>\{ 99, 105^{9}, 111^{27}, 117^{34}, 123^{48}, 129^{52}, 135^{36}, 141^{30}, 147^{15}, 153^{3}, 256 \}</math></td>
+
<td> 99, 105<sup>9</sup>, 111<sup>27</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>52</sup>, 135<sup>36</sup>, 141<sup>30</sup>, 147<sup>15</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>47</td>
 
<td>47</td>
<td><math>\{ 99^{2}, 105^{11}, 111^{24}, 117^{28}, 123^{50}, 129^{58}, 135^{38}, 141^{28}, 147^{12}, 153^{3}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>24</sup>, 117<sup>28</sup>, 123<sup>50</sup>, 129<sup>58</sup>, 135<sup>38</sup>, 141<sup>28</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>48</td>
 
<td>48</td>
<td><math>\{ 93^{2}, 99^{6}, 105^{13}, 111^{22}, 117^{32}, 123^{44}, 129^{42}, 135^{40}, 141^{30}, 147^{14}, 153^{9}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>6</sup>, 105<sup>13</sup>, 111<sup>22</sup>, 117<sup>32</sup>, 123<sup>44</sup>, 129<sup>42</sup>, 135<sup>40</sup>, 141<sup>30</sup>, 147<sup>14</sup>, 153<sup>9</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>49</td>
 
<td>49</td>
<td><math>\{ 93, 99^{4}, 105^{6}, 111^{19}, 117^{34}, 123^{56}, 129^{56}, 135^{34}, 141^{29}, 147^{12}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>6</sup>, 111<sup>19</sup>, 117<sup>34</sup>, 123<sup>56</sup>, 129<sup>56</sup>, 135<sup>34</sup>, 141<sup>29</sup>, 147<sup>12</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>50</td>
 
<td>50</td>
<td><math>\{ 93^{2}, 99, 105^{9}, 111^{21}, 117^{32}, 123^{54}, 129^{50}, 135^{42}, 141^{30}, 147^{9}, 153^{5}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99, 105<sup>9</sup>, 111<sup>21</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>50</sup>, 135<sup>42</sup>, 141<sup>30</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>51</td>
 
<td>51</td>
<td><math>\{ 93, 105^{10}, 111^{20}, 117^{38}, 123^{50}, 129^{56}, 135^{42}, 141^{17}, 147^{14}, 153^{6}, 159, 256 \}</math></td>
+
<td> 93, 105<sup>10</sup>, 111<sup>20</sup>, 117<sup>38</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>42</sup>, 141<sup>17</sup>, 147<sup>14</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>52</td>
 
<td>52</td>
<td><math>\{ 93^{2}, 99^{7}, 105^{12}, 111^{19}, 117^{38}, 123^{38}, 129^{46}, 135^{42}, 141^{24}, 147^{19}, 153^{6}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>7</sup>, 105<sup>12</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>38</sup>, 129<sup>46</sup>, 135<sup>42</sup>, 141<sup>24</sup>, 147<sup>19</sup>, 153<sup>6</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>53</td>
 
<td>53</td>
<td><math>\{ 99^{5}, 105^{8}, 111^{21}, 117^{34}, 123^{42}, 129^{58}, 135^{50}, 141^{22}, 147^{9}, 153^{6}, 256 \}</math></td>
+
<td> 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>34</sup>, 123<sup>42</sup>, 129<sup>58</sup>, 135<sup>50</sup>, 141<sup>22</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>54</td>
 
<td>54</td>
<td><math>\{ 99, 105^{12}, 111^{25}, 117^{28}, 123^{50}, 129^{56}, 135^{38}, 141^{28}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 99, 105<sup>12</sup>, 111<sup>25</sup>, 117<sup>28</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>38</sup>, 141<sup>28</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>55</td>
 
<td>55</td>
<td><math>\{ 93^{2}, 99^{4}, 105^{5}, 111^{16}, 117^{36}, 123^{58}, 129^{54}, 135^{38}, 141^{26}, 147^{10}, 153^{5}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>16</sup>, 117<sup>36</sup>, 123<sup>58</sup>, 129<sup>54</sup>, 135<sup>38</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>56</td>
 
<td>56</td>
<td><math>\{ 93^{2}, 99^{2}, 105^{9}, 111^{19}, 117^{38}, 123^{42}, 129^{52}, 135^{52}, 141^{24}, 147^{12}, 153^{3}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>42</sup>, 129<sup>52</sup>, 135<sup>52</sup>, 141<sup>24</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>57</td>
 
<td>57</td>
<td><math>\{ 87, 93, 99^{3}, 105^{14}, 111^{26}, 117^{30}, 123^{44}, 129^{48}, 135^{35}, 141^{25}, 147^{17}, 153^{10}, 159, 256 \}</math></td>
+
<td> 87, 93, 99<sup>3</sup>, 105<sup>14</sup>, 111<sup>26</sup>, 117<sup>30</sup>, 123<sup>44</sup>, 129<sup>48</sup>, 135<sup>35</sup>, 141<sup>25</sup>, 147<sup>17</sup>, 153<sup>10</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>58</td>
 
<td>58</td>
<td><math>\{ 99, 105^{13}, 111^{23}, 117^{34}, 123^{48}, 129^{40}, 135^{48}, 141^{38}, 147^{7}, 153^{3}, 256 \}</math></td>
+
<td> 99, 105<sup>13</sup>, 111<sup>23</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>40</sup>, 135<sup>48</sup>, 141<sup>38</sup>, 147<sup>7</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>59</td>
 
<td>59</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{19}, 117^{36}, 123^{52}, 129^{44}, 135^{44}, 141^{35}, 147^{9}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>44</sup>, 135<sup>44</sup>, 141<sup>35</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>60</td>
 
<td>60</td>
<td><math>\{ 99^{4}, 105^{5}, 111^{17}, 117^{42}, 123^{60}, 129^{52}, 135^{30}, 141^{22}, 147^{16}, 153^{7}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>17</sup>, 117<sup>42</sup>, 123<sup>60</sup>, 129<sup>52</sup>, 135<sup>30</sup>, 141<sup>22</sup>, 147<sup>16</sup>, 153<sup>7</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>61</td>
 
<td>61</td>
<td><math>\{ 99^{3}, 105^{10}, 111^{19}, 117^{38}, 123^{42}, 129^{58}, 135^{50}, 141^{18}, 147^{11}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>42</sup>, 129<sup>58</sup>, 135<sup>50</sup>, 141<sup>18</sup>, 147<sup>11</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>62</td>
 
<td>62</td>
<td><math>\{ 99^{4}, 105^{7}, 111^{24}, 117^{38}, 123^{42}, 129^{48}, 135^{46}, 141^{34}, 147^{10}, 153, 159, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>7</sup>, 111<sup>24</sup>, 117<sup>38</sup>, 123<sup>42</sup>, 129<sup>48</sup>, 135<sup>46</sup>, 141<sup>34</sup>, 147<sup>10</sup>, 153, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>63</td>
 
<td>63</td>
<td><math>\{ 93, 99^{2}, 105^{9}, 111^{19}, 117^{40}, 123^{44}, 129^{52}, 135^{50}, 141^{23}, 147^{10}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>40</sup>, 123<sup>44</sup>, 129<sup>52</sup>, 135<sup>50</sup>, 141<sup>23</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>64</td>
 
<td>64</td>
<td><math>\{ 93, 99^{4}, 105^{7}, 111^{16}, 117^{44}, 123^{46}, 129^{48}, 135^{46}, 141^{27}, 147^{14}, 153, 159, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>7</sup>, 111<sup>16</sup>, 117<sup>44</sup>, 123<sup>46</sup>, 129<sup>48</sup>, 135<sup>46</sup>, 141<sup>27</sup>, 147<sup>14</sup>, 153, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>65</td>
 
<td>65</td>
<td><math>\{ 99^{2}, 105^{8}, 111^{22}, 117^{38}, 123^{52}, 129^{50}, 135^{40}, 141^{26}, 147^{10}, 153^{6}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>22</sup>, 117<sup>38</sup>, 123<sup>52</sup>, 129<sup>50</sup>, 135<sup>40</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>66</td>
 
<td>66</td>
<td><math>\{ 93, 99^{2}, 105^{9}, 111^{20}, 117^{30}, 123^{58}, 129^{58}, 135^{34}, 141^{25}, 147^{12}, 153^{5}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>30</sup>, 123<sup>58</sup>, 129<sup>58</sup>, 135<sup>34</sup>, 141<sup>25</sup>, 147<sup>12</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>67</td>
 
<td>67</td>
<td><math>\{ 93, 99^{4}, 105^{7}, 111^{21}, 117^{34}, 123^{48}, 129^{54}, 135^{42}, 141^{29}, 147^{12}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>7</sup>, 111<sup>21</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>42</sup>, 141<sup>29</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>68</td>
 
<td>68</td>
<td><math>\{ 93, 99^{2}, 105^{10}, 111^{19}, 117^{34}, 123^{54}, 129^{48}, 135^{44}, 141^{29}, 147^{8}, 153^{6}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>34</sup>, 123<sup>54</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>29</sup>, 147<sup>8</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>69</td>
 
<td>69</td>
<td><math>\{ 93, 99^{4}, 105^{9}, 111^{20}, 117^{28}, 123^{50}, 129^{60}, 135^{42}, 141^{27}, 147^{10}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>28</sup>, 123<sup>50</sup>, 129<sup>60</sup>, 135<sup>42</sup>, 141<sup>27</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>70</td>
 
<td>70</td>
<td><math>\{ 99^{6}, 111^{36}, 123^{105}, 135^{88}, 147^{16}, 159^{3}, 171, 256 \}</math></td>
+
<td> 99<sup>6</sup>, 111<sup>36</sup>, 123<sup>105</sup>, 135<sup>88</sup>, 147<sup>16</sup>, 159<sup>3</sup>, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>71</td>
 
<td>71</td>
<td><math>\{ 93^{2}, 99^{4}, 105^{9}, 111^{17}, 117^{26}, 123^{56}, 129^{60}, 135^{38}, 141^{28}, 147^{12}, 153^{3}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>17</sup>, 117<sup>26</sup>, 123<sup>56</sup>, 129<sup>60</sup>, 135<sup>38</sup>, 141<sup>28</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>72</td>
 
<td>72</td>
<td><math>\{ 87, 99^{3}, 105^{5}, 111^{18}, 117^{42}, 123^{52}, 129^{52}, 135^{43}, 141^{22}, 147^{9}, 153^{7}, 159, 256 \}</math></td>
+
<td> 87, 99<sup>3</sup>, 105<sup>5</sup>, 111<sup>18</sup>, 117<sup>42</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>43</sup>, 141<sup>22</sup>, 147<sup>9</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>73</td>
 
<td>73</td>
<td><math>\{ 93, 99^{2}, 105^{8}, 111^{24}, 117^{32}, 123^{46}, 129^{58}, 135^{46}, 141^{23}, 147^{8}, 153^{6}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>24</sup>, 117<sup>32</sup>, 123<sup>46</sup>, 129<sup>58</sup>, 135<sup>46</sup>, 141<sup>23</sup>, 147<sup>8</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>74</td>
 
<td>74</td>
<td><math>\{ 93, 99^{2}, 105^{10}, 111^{19}, 117^{32}, 123^{54}, 129^{54}, 135^{44}, 141^{23}, 147^{8}, 153^{8}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>23</sup>, 147<sup>8</sup>, 153<sup>8</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>75</td>
 
<td>75</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{23}, 117^{32}, 123^{44}, 129^{52}, 135^{48}, 141^{31}, 147^{9}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>23</sup>, 117<sup>32</sup>, 123<sup>44</sup>, 129<sup>52</sup>, 135<sup>48</sup>, 141<sup>31</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>76</td>
 
<td>76</td>
<td><math>\{ 99, 105^{11}, 111^{17}, 117^{42}, 123^{52}, 129^{48}, 135^{44}, 141^{22}, 147^{11}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 99, 105<sup>11</sup>, 111<sup>17</sup>, 117<sup>42</sup>, 123<sup>52</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>22</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>77</td>
 
<td>77</td>
<td><math>\{ 93^{2}, 99^{4}, 105^{4}, 111^{15}, 117^{42}, 123^{58}, 129^{46}, 135^{40}, 141^{28}, 147^{10}, 153^{6}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>4</sup>, 105<sup>4</sup>, 111<sup>15</sup>, 117<sup>42</sup>, 123<sup>58</sup>, 129<sup>46</sup>, 135<sup>40</sup>, 141<sup>28</sup>, 147<sup>10</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>78</td>
 
<td>78</td>
<td><math>\{ 93^{2}, 99, 105^{5}, 111^{18}, 117^{49}, 123^{50}, 129^{42}, 135^{44}, 141^{28}, 147^{13}, 153, 159, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99, 105<sup>5</sup>, 111<sup>18</sup>, 117<sup>49</sup>, 123<sup>50</sup>, 129<sup>42</sup>, 135<sup>44</sup>, 141<sup>28</sup>, 147<sup>13</sup>, 153, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>79</td>
 
<td>79</td>
<td><math>\{ 99, 105^{9}, 111^{22}, 117^{38}, 123^{54}, 129^{48}, 135^{40}, 141^{26}, 147^{9}, 153^{7}, 159, 256 \}</math></td>
+
<td> 99, 105<sup>9</sup>, 111<sup>22</sup>, 117<sup>38</sup>, 123<sup>54</sup>, 129<sup>48</sup>, 135<sup>40</sup>, 141<sup>26</sup>, 147<sup>9</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>80</td>
 
<td>80</td>
<td><math>\{ 99^{3}, 105^{5}, 111^{26}, 117^{42}, 123^{38}, 129^{52}, 135^{52}, 141^{22}, 147^{7}, 153^{7}, 159, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>5</sup>, 111<sup>26</sup>, 117<sup>42</sup>, 123<sup>38</sup>, 129<sup>52</sup>, 135<sup>52</sup>, 141<sup>22</sup>, 147<sup>7</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>81</td>
 
<td>81</td>
<td><math>\{ 93, 99, 105^{11}, 111^{15}, 117^{40}, 123^{56}, 129^{48}, 135^{40}, 141^{23}, 147^{15}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>11</sup>, 111<sup>15</sup>, 117<sup>40</sup>, 123<sup>56</sup>, 129<sup>48</sup>, 135<sup>40</sup>, 141<sup>23</sup>, 147<sup>15</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>82</td>
 
<td>82</td>
<td><math>\{ 87, 99^{4}, 105^{5}, 111^{15}, 117^{41}, 123^{58}, 129^{50}, 135^{37}, 141^{30}, 147^{10}, 153, 159^{2}, 165, 256 \}</math></td>
+
<td> 87, 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>15</sup>, 117<sup>41</sup>, 123<sup>58</sup>, 129<sup>50</sup>, 135<sup>37</sup>, 141<sup>30</sup>, 147<sup>10</sup>, 153, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>83</td>
 
<td>83</td>
<td><math>\{ 99, 105^{10}, 111^{26}, 117^{32}, 123^{46}, 129^{56}, 135^{44}, 141^{24}, 147^{9}, 153^{6}, 159, 256 \}</math></td>
+
<td> 99, 105<sup>10</sup>, 111<sup>26</sup>, 117<sup>32</sup>, 123<sup>46</sup>, 129<sup>56</sup>, 135<sup>44</sup>, 141<sup>24</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>84</td>
 
<td>84</td>
<td><math>\{ 93, 99^{4}, 105^{10}, 111^{11}, 117^{38}, 123^{56}, 129^{52}, 135^{42}, 141^{25}, 147^{12}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>10</sup>, 111<sup>11</sup>, 117<sup>38</sup>, 123<sup>56</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>25</sup>, 147<sup>12</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>85</td>
 
<td>85</td>
<td><math>\{ 99^{6}, 105^{5}, 111^{17}, 117^{38}, 123^{52}, 129^{60}, 135^{38}, 141^{18}, 147^{14}, 153^{7}, 256 \}</math></td>
+
<td> 99<sup>6</sup>, 105<sup>5</sup>, 111<sup>17</sup>, 117<sup>38</sup>, 123<sup>52</sup>, 129<sup>60</sup>, 135<sup>38</sup>, 141<sup>18</sup>, 147<sup>14</sup>, 153<sup>7</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>86</td>
 
<td>86</td>
<td><math>\{ 81^{2}, 87, 93, 99^{2}, 105^{10}, 111^{22}, 117^{33}, 123^{50}, 129^{44}, 135^{39}, 141^{29}, 147^{12}, 153^{8}, 159, 165, 256 \}</math></td>
+
<td> 81<sup>2</sup>, 87, 93, 99<sup>2</sup>, 105<sup>10</sup>, 111<sup>22</sup>, 117<sup>33</sup>, 123<sup>50</sup>, 129<sup>44</sup>, 135<sup>39</sup>, 141<sup>29</sup>, 147<sup>12</sup>, 153<sup>8</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>87</td>
 
<td>87</td>
<td><math>\{ 87, 99^{2}, 105^{6}, 111^{22}, 117^{36}, 123^{50}, 129^{60}, 135^{39}, 141^{20}, 147^{12}, 153^{6}, 159, 256 \}</math></td>
+
<td> 87, 99<sup>2</sup>, 105<sup>6</sup>, 111<sup>22</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>60</sup>, 135<sup>39</sup>, 141<sup>20</sup>, 147<sup>12</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>88</td>
 
<td>88</td>
<td><math>\{ 93, 99^{5}, 105^{7}, 111^{20}, 117^{30}, 123^{48}, 129^{62}, 135^{42}, 141^{25}, 147^{11}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>7</sup>, 111<sup>20</sup>, 117<sup>30</sup>, 123<sup>48</sup>, 129<sup>62</sup>, 135<sup>42</sup>, 141<sup>25</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>89</td>
 
<td>89</td>
<td><math>\{ 93, 99^{5}, 105^{5}, 111^{13}, 117^{44}, 123^{52}, 129^{56}, 135^{40}, 141^{19}, 147^{15}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>5</sup>, 111<sup>13</sup>, 117<sup>44</sup>, 123<sup>52</sup>, 129<sup>56</sup>, 135<sup>40</sup>, 141<sup>19</sup>, 147<sup>15</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>90</td>
 
<td>90</td>
<td><math>\{ 105^{11}, 111^{21}, 117^{40}, 123^{50}, 129^{50}, 135^{40}, 141^{24}, 147^{14}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 105<sup>11</sup>, 111<sup>21</sup>, 117<sup>40</sup>, 123<sup>50</sup>, 129<sup>50</sup>, 135<sup>40</sup>, 141<sup>24</sup>, 147<sup>14</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>91</td>
 
<td>91</td>
<td><math>\{ 99^{3}, 105^{9}, 111^{27}, 117^{30}, 123^{40}, 129^{60}, 135^{44}, 141^{26}, 147^{13}, 153^{3}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>27</sup>, 117<sup>30</sup>, 123<sup>40</sup>, 129<sup>60</sup>, 135<sup>44</sup>, 141<sup>26</sup>, 147<sup>13</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>92</td>
 
<td>92</td>
<td><math>\{ 93^{2}, 105^{8}, 111^{23}, 117^{42}, 123^{42}, 129^{46}, 135^{48}, 141^{28}, 147^{14}, 153^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 105<sup>8</sup>, 111<sup>23</sup>, 117<sup>42</sup>, 123<sup>42</sup>, 129<sup>46</sup>, 135<sup>48</sup>, 141<sup>28</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>93</td>
 
<td>93</td>
<td><math>\{ 93, 99^{2}, 105^{8}, 111^{25}, 117^{34}, 123^{44}, 129^{52}, 135^{46}, 141^{29}, 147^{10}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>25</sup>, 117<sup>34</sup>, 123<sup>44</sup>, 129<sup>52</sup>, 135<sup>46</sup>, 141<sup>29</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>94</td>
 
<td>94</td>
<td><math>\{ 93^{3}, 99, 105^{4}, 111^{23}, 117^{40}, 123^{44}, 129^{58}, 135^{40}, 141^{21}, 147^{19}, 153^{2}, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99, 105<sup>4</sup>, 111<sup>23</sup>, 117<sup>40</sup>, 123<sup>44</sup>, 129<sup>58</sup>, 135<sup>40</sup>, 141<sup>21</sup>, 147<sup>19</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>95</td>
 
<td>95</td>
<td><math>\{ 93^{4}, 99^{5}, 105^{8}, 111^{22}, 117^{37}, 123^{46}, 129^{40}, 135^{40}, 141^{30}, 147^{13}, 153^{8}, 159, 165, 256 \}</math></td>
+
<td> 93<sup>4</sup>, 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>22</sup>, 117<sup>37</sup>, 123<sup>46</sup>, 129<sup>40</sup>, 135<sup>40</sup>, 141<sup>30</sup>, 147<sup>13</sup>, 153<sup>8</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>96</td>
 
<td>96</td>
<td><math>\{ 87, 99^{4}, 105^{9}, 111^{16}, 117^{34}, 123^{52}, 129^{52}, 135^{45}, 141^{30}, 147^{8}, 153^{3}, 159, 256 \}</math></td>
+
<td> 87, 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>16</sup>, 117<sup>34</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>45</sup>, 141<sup>30</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>97</td>
 
<td>97</td>
<td><math>\{ 75, 93, 99^{7}, 105^{10}, 111^{19}, 117^{38}, 123^{41}, 129^{44}, 135^{44}, 141^{25}, 147^{15}, 153^{10}, 256 \}</math></td>
+
<td> 75, 93, 99<sup>7</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>41</sup>, 129<sup>44</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>15</sup>, 153<sup>10</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>98</td>
 
<td>98</td>
<td><math>\{ 93, 99^{2}, 105^{12}, 111^{13}, 117^{38}, 123^{56}, 129^{48}, 135^{42}, 141^{25}, 147^{14}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>12</sup>, 111<sup>13</sup>, 117<sup>38</sup>, 123<sup>56</sup>, 129<sup>48</sup>, 135<sup>42</sup>, 141<sup>25</sup>, 147<sup>14</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>99</td>
 
<td>99</td>
<td><math>\{ 87, 93, 105^{7}, 111^{22}, 117^{33}, 123^{54}, 129^{60}, 135^{39}, 141^{21}, 147^{10}, 153^{5}, 159, 165, 256 \}</math></td>
+
<td> 87, 93, 105<sup>7</sup>, 111<sup>22</sup>, 117<sup>33</sup>, 123<sup>54</sup>, 129<sup>60</sup>, 135<sup>39</sup>, 141<sup>21</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>100</td>
 
<td>100</td>
<td><math>\{ 87, 93, 99, 105^{8}, 111^{19}, 117^{32}, 123^{60}, 129^{54}, 135^{33}, 141^{31}, 147^{11}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 87, 93, 99, 105<sup>8</sup>, 111<sup>19</sup>, 117<sup>32</sup>, 123<sup>60</sup>, 129<sup>54</sup>, 135<sup>33</sup>, 141<sup>31</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>101</td>
 
<td>101</td>
<td><math>\{ 99^{3}, 105^{10}, 111^{25}, 117^{30}, 123^{44}, 129^{54}, 135^{44}, 141^{34}, 147^{9}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>25</sup>, 117<sup>30</sup>, 123<sup>44</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>34</sup>, 147<sup>9</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>102</td>
 
<td>102</td>
<td><math>\{ 99^{2}, 105^{11}, 111^{21}, 117^{30}, 123^{54}, 129^{56}, 135^{40}, 141^{26}, 147^{8}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>21</sup>, 117<sup>30</sup>, 123<sup>54</sup>, 129<sup>56</sup>, 135<sup>40</sup>, 141<sup>26</sup>, 147<sup>8</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>103</td>
 
<td>103</td>
<td><math>\{ 93, 99^{2}, 105^{8}, 111^{22}, 117^{34}, 123^{52}, 129^{52}, 135^{40}, 141^{29}, 147^{10}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>22</sup>, 117<sup>34</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>29</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>104</td>
 
<td>104</td>
<td><math>\{ 93, 99^{2}, 105^{11}, 111^{20}, 117^{30}, 123^{54}, 129^{50}, 135^{42}, 141^{33}, 147^{8}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>20</sup>, 117<sup>30</sup>, 123<sup>54</sup>, 129<sup>50</sup>, 135<sup>42</sup>, 141<sup>33</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>105</td>
 
<td>105</td>
<td><math>\{ 87, 99^{2}, 105^{9}, 111^{19}, 117^{36}, 123^{46}, 129^{62}, 135^{41}, 141^{20}, 147^{16}, 153, 159^{2}, 256 \}</math></td>
+
<td> 87, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>36</sup>, 123<sup>46</sup>, 129<sup>62</sup>, 135<sup>41</sup>, 141<sup>20</sup>, 147<sup>16</sup>, 153, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>106</td>
 
<td>106</td>
<td><math>\{ 99, 105^{12}, 111^{22}, 117^{36}, 123^{46}, 129^{52}, 135^{40}, 141^{28}, 147^{17}, 159, 256 \}</math></td>
+
<td> 99, 105<sup>12</sup>, 111<sup>22</sup>, 117<sup>36</sup>, 123<sup>46</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>28</sup>, 147<sup>17</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>107</td>
 
<td>107</td>
<td><math>\{ 99, 105^{15}, 111^{18}, 117^{33}, 123^{46}, 129^{54}, 135^{52}, 141^{22}, 147^{9}, 153^{3}, 159, 165, 256 \}</math></td>
+
<td> 99, 105<sup>15</sup>, 111<sup>18</sup>, 117<sup>33</sup>, 123<sup>46</sup>, 129<sup>54</sup>, 135<sup>52</sup>, 141<sup>22</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>108</td>
 
<td>108</td>
<td><math>\{ 99^{2}, 105^{11}, 111^{21}, 117^{30}, 123^{54}, 129^{56}, 135^{40}, 141^{26}, 147^{8}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>21</sup>, 117<sup>30</sup>, 123<sup>54</sup>, 129<sup>56</sup>, 135<sup>40</sup>, 141<sup>26</sup>, 147<sup>8</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>109</td>
 
<td>109</td>
<td><math>\{ 99^{4}, 105^{5}, 111^{25}, 117^{40}, 123^{40}, 129^{54}, 135^{46}, 141^{24}, 147^{12}, 153^{5}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>25</sup>, 117<sup>40</sup>, 123<sup>40</sup>, 129<sup>54</sup>, 135<sup>46</sup>, 141<sup>24</sup>, 147<sup>12</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>110</td>
 
<td>110</td>
<td><math>\{ 93, 99^{5}, 105^{8}, 111^{16}, 117^{32}, 123^{56}, 129^{54}, 135^{38}, 141^{31}, 147^{11}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>16</sup>, 117<sup>32</sup>, 123<sup>56</sup>, 129<sup>54</sup>, 135<sup>38</sup>, 141<sup>31</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>111</td>
 
<td>111</td>
<td><math>\{ 93^{2}, 99^{2}, 105^{8}, 111^{17}, 117^{42}, 123^{46}, 129^{46}, 135^{52}, 141^{28}, 147^{8}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>17</sup>, 117<sup>42</sup>, 123<sup>46</sup>, 129<sup>46</sup>, 135<sup>52</sup>, 141<sup>28</sup>, 147<sup>8</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>112</td>
 
<td>112</td>
<td><math>\{ 93, 99^{4}, 105^{10}, 111^{16}, 117^{36}, 123^{42}, 129^{58}, 135^{54}, 141^{19}, 147^{10}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>10</sup>, 111<sup>16</sup>, 117<sup>36</sup>, 123<sup>42</sup>, 129<sup>58</sup>, 135<sup>54</sup>, 141<sup>19</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>113</td>
 
<td>113</td>
<td><math>\{ 93, 105^{10}, 111^{24}, 117^{38}, 123^{42}, 129^{52}, 135^{46}, 141^{25}, 147^{14}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 105<sup>10</sup>, 111<sup>24</sup>, 117<sup>38</sup>, 123<sup>42</sup>, 129<sup>52</sup>, 135<sup>46</sup>, 141<sup>25</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>114</td>
 
<td>114</td>
<td><math>\{ 75, 99^{2}, 105^{3}, 111^{25}, 117^{42}, 123^{45}, 129^{52}, 135^{38}, 141^{30}, 147^{16}, 153, 256 \}</math></td>
+
<td> 75, 99<sup>2</sup>, 105<sup>3</sup>, 111<sup>25</sup>, 117<sup>42</sup>, 123<sup>45</sup>, 129<sup>52</sup>, 135<sup>38</sup>, 141<sup>30</sup>, 147<sup>16</sup>, 153, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>115</td>
 
<td>115</td>
<td><math>\{ 87, 93^{2}, 99, 105^{9}, 111^{17}, 117^{32}, 123^{50}, 129^{62}, 135^{43}, 141^{22}, 147^{13}, 153, 159^{2}, 256 \}</math></td>
+
<td> 87, 93<sup>2</sup>, 99, 105<sup>9</sup>, 111<sup>17</sup>, 117<sup>32</sup>, 123<sup>50</sup>, 129<sup>62</sup>, 135<sup>43</sup>, 141<sup>22</sup>, 147<sup>13</sup>, 153, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>116</td>
 
<td>116</td>
<td><math>\{ 99^{4}, 105^{10}, 111^{23}, 117^{28}, 123^{46}, 129^{60}, 135^{40}, 141^{28}, 147^{14}, 153^{2}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>10</sup>, 111<sup>23</sup>, 117<sup>28</sup>, 123<sup>46</sup>, 129<sup>60</sup>, 135<sup>40</sup>, 141<sup>28</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>117</td>
 
<td>117</td>
<td><math>\{ 93^{2}, 99, 105^{11}, 111^{17}, 117^{32}, 123^{52}, 129^{58}, 135^{44}, 141^{22}, 147^{11}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99, 105<sup>11</sup>, 111<sup>17</sup>, 117<sup>32</sup>, 123<sup>52</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>22</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>118</td>
 
<td>118</td>
<td><math>\{ 99^{2}, 105^{6}, 111^{24}, 117^{40}, 123^{50}, 129^{52}, 135^{38}, 141^{24}, 147^{12}, 153^{6}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>6</sup>, 111<sup>24</sup>, 117<sup>40</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>38</sup>, 141<sup>24</sup>, 147<sup>12</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>119</td>
 
<td>119</td>
<td><math>\{ 93, 99^{5}, 105^{6}, 111^{20}, 117^{36}, 123^{44}, 129^{54}, 135^{50}, 141^{27}, 147^{7}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>6</sup>, 111<sup>20</sup>, 117<sup>36</sup>, 123<sup>44</sup>, 129<sup>54</sup>, 135<sup>50</sup>, 141<sup>27</sup>, 147<sup>7</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>120</td>
 
<td>120</td>
<td><math>\{ 93, 99^{3}, 105^{6}, 111^{20}, 117^{37}, 123^{52}, 129^{54}, 135^{42}, 141^{25}, 147^{9}, 153^{4}, 159, 165, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>6</sup>, 111<sup>20</sup>, 117<sup>37</sup>, 123<sup>52</sup>, 129<sup>54</sup>, 135<sup>42</sup>, 141<sup>25</sup>, 147<sup>9</sup>, 153<sup>4</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>121</td>
 
<td>121</td>
<td><math>\{ 93^{2}, 99^{8}, 105^{13}, 111^{15}, 117^{36}, 123^{41}, 129^{46}, 135^{46}, 141^{26}, 147^{14}, 153^{5}, 159^{2}, 171, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>8</sup>, 105<sup>13</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>41</sup>, 129<sup>46</sup>, 135<sup>46</sup>, 141<sup>26</sup>, 147<sup>14</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>122</td>
 
<td>122</td>
<td><math>\{ 93, 99^{2}, 105^{6}, 111^{22}, 117^{38}, 123^{54}, 129^{48}, 135^{38}, 141^{33}, 147^{8}, 153^{2}, 159^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>6</sup>, 111<sup>22</sup>, 117<sup>38</sup>, 123<sup>54</sup>, 129<sup>48</sup>, 135<sup>38</sup>, 141<sup>33</sup>, 147<sup>8</sup>, 153<sup>2</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>123</td>
 
<td>123</td>
<td><math>\{ 99^{3}, 105^{10}, 111^{19}, 117^{38}, 123^{44}, 129^{58}, 135^{44}, 141^{18}, 147^{17}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>44</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>18</sup>, 147<sup>17</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>124</td>
 
<td>124</td>
<td><math>\{ 93, 99^{3}, 105^{11}, 111^{12}, 117^{36}, 123^{56}, 129^{56}, 135^{42}, 141^{19}, 147^{13}, 153^{5}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>11</sup>, 111<sup>12</sup>, 117<sup>36</sup>, 123<sup>56</sup>, 129<sup>56</sup>, 135<sup>42</sup>, 141<sup>19</sup>, 147<sup>13</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>125</td>
 
<td>125</td>
<td><math>\{ 93, 99, 105^{7}, 111^{23}, 117^{40}, 123^{52}, 129^{44}, 135^{40}, 141^{31}, 147^{11}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>7</sup>, 111<sup>23</sup>, 117<sup>40</sup>, 123<sup>52</sup>, 129<sup>44</sup>, 135<sup>40</sup>, 141<sup>31</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>126</td>
 
<td>126</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{9}, 111^{14}, 117^{38}, 123^{50}, 129^{52}, 135^{48}, 141^{24}, 147^{11}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>14</sup>, 117<sup>38</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>48</sup>, 141<sup>24</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>127</td>
 
<td>127</td>
<td><math>\{ 99, 105^{8}, 111^{29}, 117^{33}, 123^{42}, 129^{60}, 135^{42}, 141^{22}, 147^{13}, 153^{4}, 165, 256 \}</math></td>
+
<td> 99, 105<sup>8</sup>, 111<sup>29</sup>, 117<sup>33</sup>, 123<sup>42</sup>, 129<sup>60</sup>, 135<sup>42</sup>, 141<sup>22</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>128</td>
 
<td>128</td>
<td><math>\{ 99^{3}, 105^{12}, 111^{17}, 117^{36}, 123^{46}, 129^{56}, 135^{46}, 141^{20}, 147^{15}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>12</sup>, 111<sup>17</sup>, 117<sup>36</sup>, 123<sup>46</sup>, 129<sup>56</sup>, 135<sup>46</sup>, 141<sup>20</sup>, 147<sup>15</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>129</td>
 
<td>129</td>
<td><math>\{ 99^{3}, 105^{7}, 111^{24}, 117^{36}, 123^{48}, 129^{54}, 135^{38}, 141^{28}, 147^{13}, 153^{3}, 159, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>24</sup>, 117<sup>36</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>38</sup>, 141<sup>28</sup>, 147<sup>13</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>130</td>
 
<td>130</td>
<td><math>\{ 93, 99^{3}, 105^{6}, 111^{20}, 117^{36}, 123^{53}, 129^{54}, 135^{42}, 141^{27}, 147^{7}, 153^{4}, 159, 171, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>6</sup>, 111<sup>20</sup>, 117<sup>36</sup>, 123<sup>53</sup>, 129<sup>54</sup>, 135<sup>42</sup>, 141<sup>27</sup>, 147<sup>7</sup>, 153<sup>4</sup>, 159, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>131</td>
 
<td>131</td>
<td><math>\{ 99^{2}, 105^{6}, 111^{26}, 117^{38}, 123^{48}, 129^{54}, 135^{36}, 141^{26}, 147^{14}, 153^{4}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>6</sup>, 111<sup>26</sup>, 117<sup>38</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>36</sup>, 141<sup>26</sup>, 147<sup>14</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>132</td>
 
<td>132</td>
<td><math>\{ 93, 99, 105^{12}, 111^{18}, 117^{32}, 123^{52}, 129^{58}, 135^{42}, 141^{23}, 147^{11}, 153^{2}, 159^{3}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>12</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>52</sup>, 129<sup>58</sup>, 135<sup>42</sup>, 141<sup>23</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>133</td>
 
<td>133</td>
<td><math>\{ 93, 99^{2}, 105^{7}, 111^{25}, 117^{36}, 123^{44}, 129^{52}, 135^{46}, 141^{27}, 147^{10}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>25</sup>, 117<sup>36</sup>, 123<sup>44</sup>, 129<sup>52</sup>, 135<sup>46</sup>, 141<sup>27</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>134</td>
 
<td>134</td>
<td><math>\{ 99^{2}, 105^{7}, 111^{21}, 117^{43}, 123^{46}, 129^{56}, 135^{40}, 141^{20}, 147^{16}, 153, 159^{2}, 165, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>21</sup>, 117<sup>43</sup>, 123<sup>46</sup>, 129<sup>56</sup>, 135<sup>40</sup>, 141<sup>20</sup>, 147<sup>16</sup>, 153, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>135</td>
 
<td>135</td>
<td><math>\{ 99^{5}, 105^{7}, 111^{14}, 117^{39}, 123^{58}, 129^{52}, 135^{40}, 141^{24}, 147^{9}, 153^{5}, 159, 165, 256 \}</math></td>
+
<td> 99<sup>5</sup>, 105<sup>7</sup>, 111<sup>14</sup>, 117<sup>39</sup>, 123<sup>58</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>24</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>136</td>
 
<td>136</td>
<td><math>\{ 93^{3}, 99^{3}, 105^{16}, 111^{25}, 117^{30}, 123^{36}, 129^{44}, 135^{44}, 141^{31}, 147^{17}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99<sup>3</sup>, 105<sup>16</sup>, 111<sup>25</sup>, 117<sup>30</sup>, 123<sup>36</sup>, 129<sup>44</sup>, 135<sup>44</sup>, 141<sup>31</sup>, 147<sup>17</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>137</td>
 
<td>137</td>
<td><math>\{ 87, 99^{2}, 105^{8}, 111^{18}, 117^{32}, 123^{59}, 129^{60}, 135^{35}, 141^{24}, 147^{10}, 153^{4}, 159, 171, 256 \}</math></td>
+
<td> 87, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>59</sup>, 129<sup>60</sup>, 135<sup>35</sup>, 141<sup>24</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>138</td>
 
<td>138</td>
<td><math>\{ 93, 99^{3}, 105^{8}, 111^{15}, 117^{40}, 123^{52}, 129^{54}, 135^{44}, 141^{23}, 147^{9}, 153^{2}, 159^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>15</sup>, 117<sup>40</sup>, 123<sup>52</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>23</sup>, 147<sup>9</sup>, 153<sup>2</sup>, 159<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>139</td>
 
<td>139</td>
<td><math>\{ 93, 99^{4}, 105^{4}, 111^{18}, 117^{41}, 123^{52}, 129^{54}, 135^{44}, 141^{21}, 147^{8}, 153^{6}, 159, 165, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>4</sup>, 111<sup>18</sup>, 117<sup>41</sup>, 123<sup>52</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>21</sup>, 147<sup>8</sup>, 153<sup>6</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>140</td>
 
<td>140</td>
<td><math>\{ 93, 99^{5}, 105^{5}, 111^{19}, 117^{38}, 123^{48}, 129^{54}, 135^{44}, 141^{25}, 147^{11}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>5</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>141</td>
 
<td>141</td>
<td><math>\{ 87, 99^{2}, 105^{12}, 111^{15}, 117^{36}, 123^{48}, 129^{56}, 135^{47}, 141^{20}, 147^{14}, 153^{4}, 256 \}</math></td>
+
<td> 87, 99<sup>2</sup>, 105<sup>12</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>48</sup>, 129<sup>56</sup>, 135<sup>47</sup>, 141<sup>20</sup>, 147<sup>14</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>142</td>
 
<td>142</td>
<td><math>\{ 93, 99, 105^{9}, 111^{24}, 117^{32}, 123^{48}, 129^{56}, 135^{46}, 141^{23}, 147^{7}, 153^{7}, 159, 256 \}</math></td>
+
<td> 93, 99, 105<sup>9</sup>, 111<sup>24</sup>, 117<sup>32</sup>, 123<sup>48</sup>, 129<sup>56</sup>, 135<sup>46</sup>, 141<sup>23</sup>, 147<sup>7</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>143</td>
 
<td>143</td>
<td><math>\{ 99, 105^{10}, 111^{20}, 117^{42}, 123^{46}, 129^{50}, 135^{48}, 141^{22}, 147^{9}, 153^{4}, 159^{3}, 256 \}</math></td>
+
<td> 99, 105<sup>10</sup>, 111<sup>20</sup>, 117<sup>42</sup>, 123<sup>46</sup>, 129<sup>50</sup>, 135<sup>48</sup>, 141<sup>22</sup>, 147<sup>9</sup>, 153<sup>4</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>144</td>
 
<td>144</td>
<td><math>\{ 93, 99^{2}, 105^{12}, 111^{17}, 117^{36}, 123^{48}, 129^{50}, 135^{46}, 141^{27}, 147^{14}, 153^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>12</sup>, 111<sup>17</sup>, 117<sup>36</sup>, 123<sup>48</sup>, 129<sup>50</sup>, 135<sup>46</sup>, 141<sup>27</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>145</td>
 
<td>145</td>
<td><math>\{ 93^{2}, 99^{4}, 105^{6}, 111^{18}, 117^{32}, 123^{56}, 129^{56}, 135^{36}, 141^{30}, 147^{12}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>4</sup>, 105<sup>6</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>56</sup>, 129<sup>56</sup>, 135<sup>36</sup>, 141<sup>30</sup>, 147<sup>12</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>146</td>
 
<td>146</td>
<td><math>\{ 93^{3}, 99^{5}, 105^{12}, 111^{25}, 117^{28}, 123^{40}, 129^{48}, 135^{44}, 141^{31}, 147^{11}, 153^{4}, 159^{2}, 165^{2}, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99<sup>5</sup>, 105<sup>12</sup>, 111<sup>25</sup>, 117<sup>28</sup>, 123<sup>40</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>31</sup>, 147<sup>11</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 165<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>147</td>
 
<td>147</td>
<td><math>\{ 99^{2}, 105^{5}, 111^{25}, 117^{38}, 123^{53}, 129^{56}, 135^{30}, 141^{26}, 147^{16}, 153^{3}, 171, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>5</sup>, 111<sup>25</sup>, 117<sup>38</sup>, 123<sup>53</sup>, 129<sup>56</sup>, 135<sup>30</sup>, 141<sup>26</sup>, 147<sup>16</sup>, 153<sup>3</sup>, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>148</td>
 
<td>148</td>
<td><math>\{ 99^{4}, 105^{9}, 111^{21}, 117^{34}, 123^{48}, 129^{52}, 135^{42}, 141^{30}, 147^{12}, 153^{3}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>21</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>30</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>149</td>
 
<td>149</td>
<td><math>\{ 99^{5}, 111^{40}, 123^{104}, 135^{78}, 147^{27}, 159, 256 \}</math></td>
+
<td> 99<sup>5</sup>, 111<sup>40</sup>, 123<sup>104</sup>, 135<sup>78</sup>, 147<sup>27</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>150</td>
 
<td>150</td>
<td><math>\{ 93, 99, 105^{11}, 111^{23}, 117^{28}, 123^{48}, 129^{58}, 135^{48}, 141^{25}, 147^{7}, 153^{3}, 165^{2}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>11</sup>, 111<sup>23</sup>, 117<sup>28</sup>, 123<sup>48</sup>, 129<sup>58</sup>, 135<sup>48</sup>, 141<sup>25</sup>, 147<sup>7</sup>, 153<sup>3</sup>, 165<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>151</td>
 
<td>151</td>
<td><math>\{ 93, 105^{11}, 111^{26}, 117^{27}, 123^{48}, 129^{58}, 135^{44}, 141^{27}, 147^{8}, 153^{3}, 159, 165, 256 \}</math></td>
+
<td> 93, 105<sup>11</sup>, 111<sup>26</sup>, 117<sup>27</sup>, 123<sup>48</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>27</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>152</td>
 
<td>152</td>
<td><math>\{ 93, 99^{3}, 105^{12}, 111^{14}, 117^{34}, 123^{50}, 129^{56}, 135^{48}, 141^{21}, 147^{11}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>12</sup>, 111<sup>14</sup>, 117<sup>34</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>48</sup>, 141<sup>21</sup>, 147<sup>11</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>153</td>
 
<td>153</td>
<td><math>\{ 93, 99^{3}, 105^{8}, 111^{16}, 117^{44}, 123^{48}, 129^{46}, 135^{46}, 141^{27}, 147^{13}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>16</sup>, 117<sup>44</sup>, 123<sup>48</sup>, 129<sup>46</sup>, 135<sup>46</sup>, 141<sup>27</sup>, 147<sup>13</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>154</td>
 
<td>154</td>
<td><math>\{ 93^{2}, 99, 105^{10}, 111^{21}, 117^{32}, 123^{44}, 129^{60}, 135^{48}, 141^{22}, 147^{11}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99, 105<sup>10</sup>, 111<sup>21</sup>, 117<sup>32</sup>, 123<sup>44</sup>, 129<sup>60</sup>, 135<sup>48</sup>, 141<sup>22</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>155</td>
 
<td>155</td>
<td><math>\{ 93, 99^{3}, 105^{7}, 111^{25}, 117^{30}, 123^{46}, 129^{62}, 135^{38}, 141^{25}, 147^{15}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>25</sup>, 117<sup>30</sup>, 123<sup>46</sup>, 129<sup>62</sup>, 135<sup>38</sup>, 141<sup>25</sup>, 147<sup>15</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>156</td>
 
<td>156</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{11}, 111^{23}, 117^{39}, 123^{48}, 129^{48}, 135^{28}, 141^{22}, 147^{21}, 153^{5}, 159^{4}, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>11</sup>, 111<sup>23</sup>, 117<sup>39</sup>, 123<sup>48</sup>, 129<sup>48</sup>, 135<sup>28</sup>, 141<sup>22</sup>, 147<sup>21</sup>, 153<sup>5</sup>, 159<sup>4</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>157</td>
 
<td>157</td>
<td><math>\{ 93^{2}, 99^{2}, 105^{7}, 111^{18}, 117^{32}, 123^{60}, 129^{58}, 135^{36}, 141^{22}, 147^{10}, 153^{7}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>60</sup>, 129<sup>58</sup>, 135<sup>36</sup>, 141<sup>22</sup>, 147<sup>10</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>158</td>
 
<td>158</td>
<td><math>\{ 93, 99^{5}, 105^{8}, 111^{17}, 117^{30}, 123^{54}, 129^{60}, 135^{38}, 141^{25}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>17</sup>, 117<sup>30</sup>, 123<sup>54</sup>, 129<sup>60</sup>, 135<sup>38</sup>, 141<sup>25</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>159</td>
 
<td>159</td>
<td><math>\{ 93^{3}, 99, 105^{8}, 111^{18}, 117^{36}, 123^{50}, 129^{54}, 135^{44}, 141^{25}, 147^{13}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99, 105<sup>8</sup>, 111<sup>18</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>13</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>160</td>
 
<td>160</td>
<td><math>\{ 99^{2}, 105^{7}, 111^{25}, 117^{38}, 123^{48}, 129^{52}, 135^{38}, 141^{26}, 147^{14}, 153^{5}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>25</sup>, 117<sup>38</sup>, 123<sup>48</sup>, 129<sup>52</sup>, 135<sup>38</sup>, 141<sup>26</sup>, 147<sup>14</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>161</td>
 
<td>161</td>
<td><math>\{ 93, 99^{4}, 105^{9}, 111^{19}, 117^{32}, 123^{50}, 129^{52}, 135^{44}, 141^{31}, 147^{10}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>32</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>44</sup>, 141<sup>31</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>162</td>
 
<td>162</td>
<td><math>\{ 99^{4}, 105^{9}, 111^{23}, 117^{32}, 123^{42}, 129^{58}, 135^{48}, 141^{24}, 147^{10}, 153^{5}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>23</sup>, 117<sup>32</sup>, 123<sup>42</sup>, 129<sup>58</sup>, 135<sup>48</sup>, 141<sup>24</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>163</td>
 
<td>163</td>
<td><math>\{ 105^{11}, 111^{27}, 117^{36}, 123^{42}, 129^{46}, 135^{52}, 141^{28}, 147^{6}, 153^{7}, 256 \}</math></td>
+
<td> 105<sup>11</sup>, 111<sup>27</sup>, 117<sup>36</sup>, 123<sup>42</sup>, 129<sup>46</sup>, 135<sup>52</sup>, 141<sup>28</sup>, 147<sup>6</sup>, 153<sup>7</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>164</td>
 
<td>164</td>
<td><math>\{ 99^{2}, 105^{11}, 111^{18}, 117^{40}, 123^{48}, 129^{50}, 135^{44}, 141^{24}, 147^{14}, 153^{3}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>18</sup>, 117<sup>40</sup>, 123<sup>48</sup>, 129<sup>50</sup>, 135<sup>44</sup>, 141<sup>24</sup>, 147<sup>14</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>165</td>
 
<td>165</td>
<td><math>\{ 93, 99^{3}, 105^{10}, 111^{21}, 117^{32}, 123^{46}, 129^{50}, 135^{50}, 141^{31}, 147^{7}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>21</sup>, 117<sup>32</sup>, 123<sup>46</sup>, 129<sup>50</sup>, 135<sup>50</sup>, 141<sup>31</sup>, 147<sup>7</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>166</td>
 
<td>166</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{12}, 117^{44}, 123^{56}, 129^{44}, 135^{42}, 141^{27}, 147^{13}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>12</sup>, 117<sup>44</sup>, 123<sup>56</sup>, 129<sup>44</sup>, 135<sup>42</sup>, 141<sup>27</sup>, 147<sup>13</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>167</td>
 
<td>167</td>
<td><math>\{ 99^{2}, 105^{12}, 111^{17}, 117^{36}, 123^{50}, 129^{56}, 135^{44}, 141^{20}, 147^{12}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>12</sup>, 111<sup>17</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>44</sup>, 141<sup>20</sup>, 147<sup>12</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>168</td>
 
<td>168</td>
<td><math>\{ 99^{4}, 105^{5}, 111^{21}, 117^{44}, 123^{48}, 129^{46}, 135^{42}, 141^{28}, 147^{12}, 153^{5}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>21</sup>, 117<sup>44</sup>, 123<sup>48</sup>, 129<sup>46</sup>, 135<sup>42</sup>, 141<sup>28</sup>, 147<sup>12</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>169</td>
 
<td>169</td>
<td><math>\{ 99^{2}, 105^{8}, 111^{21}, 117^{40}, 123^{52}, 129^{48}, 135^{42}, 141^{24}, 147^{10}, 153^{8}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>40</sup>, 123<sup>52</sup>, 129<sup>48</sup>, 135<sup>42</sup>, 141<sup>24</sup>, 147<sup>10</sup>, 153<sup>8</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>170</td>
 
<td>170</td>
<td><math>\{ 99^{4}, 105^{8}, 111^{17}, 117^{37}, 123^{56}, 129^{52}, 135^{38}, 141^{26}, 147^{12}, 153^{4}, 165, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>8</sup>, 111<sup>17</sup>, 117<sup>37</sup>, 123<sup>56</sup>, 129<sup>52</sup>, 135<sup>38</sup>, 141<sup>26</sup>, 147<sup>12</sup>, 153<sup>4</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>171</td>
 
<td>171</td>
<td><math>\{ 99^{2}, 105^{9}, 111^{22}, 117^{36}, 123^{52}, 129^{50}, 135^{40}, 141^{28}, 147^{10}, 153^{5}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>22</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>50</sup>, 135<sup>40</sup>, 141<sup>28</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>172</td>
 
<td>172</td>
<td><math>\{ 87, 93, 99^{2}, 105^{8}, 111^{20}, 117^{30}, 123^{52}, 129^{60}, 135^{41}, 141^{25}, 147^{10}, 153^{4}, 159, 256 \}</math></td>
+
<td> 87, 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>20</sup>, 117<sup>30</sup>, 123<sup>52</sup>, 129<sup>60</sup>, 135<sup>41</sup>, 141<sup>25</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>173</td>
 
<td>173</td>
<td><math>\{ 87, 93, 99, 105^{8}, 111^{17}, 117^{46}, 123^{44}, 129^{44}, 135^{53}, 141^{25}, 147^{11}, 153^{4}, 256 \}</math></td>
+
<td> 87, 93, 99, 105<sup>8</sup>, 111<sup>17</sup>, 117<sup>46</sup>, 123<sup>44</sup>, 129<sup>44</sup>, 135<sup>53</sup>, 141<sup>25</sup>, 147<sup>11</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>174</td>
 
<td>174</td>
<td><math>\{ 93, 99^{6}, 105^{8}, 111^{11}, 117^{40}, 123^{48}, 129^{54}, 135^{50}, 141^{23}, 147^{10}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>6</sup>, 105<sup>8</sup>, 111<sup>11</sup>, 117<sup>40</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>50</sup>, 141<sup>23</sup>, 147<sup>10</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>175</td>
 
<td>175</td>
<td><math>\{ 93^{2}, 99^{5}, 105^{14}, 111^{19}, 117^{37}, 123^{42}, 129^{44}, 135^{42}, 141^{24}, 147^{17}, 153^{6}, 159^{2}, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>5</sup>, 105<sup>14</sup>, 111<sup>19</sup>, 117<sup>37</sup>, 123<sup>42</sup>, 129<sup>44</sup>, 135<sup>42</sup>, 141<sup>24</sup>, 147<sup>17</sup>, 153<sup>6</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>176</td>
 
<td>176</td>
<td><math>\{ 99, 105^{10}, 111^{20}, 117^{40}, 123^{56}, 129^{40}, 135^{42}, 141^{32}, 147^{7}, 153^{6}, 159, 256 \}</math></td>
+
<td> 99, 105<sup>10</sup>, 111<sup>20</sup>, 117<sup>40</sup>, 123<sup>56</sup>, 129<sup>40</sup>, 135<sup>42</sup>, 141<sup>32</sup>, 147<sup>7</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>177</td>
 
<td>177</td>
<td><math>\{ 93, 105^{11}, 111^{22}, 117^{36}, 123^{46}, 129^{52}, 135^{46}, 141^{27}, 147^{10}, 153, 159^{3}, 256 \}</math></td>
+
<td> 93, 105<sup>11</sup>, 111<sup>22</sup>, 117<sup>36</sup>, 123<sup>46</sup>, 129<sup>52</sup>, 135<sup>46</sup>, 141<sup>27</sup>, 147<sup>10</sup>, 153, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>178</td>
 
<td>178</td>
<td><math>\{ 93, 99^{3}, 105^{10}, 111^{18}, 117^{32}, 123^{54}, 129^{50}, 135^{44}, 141^{31}, 147^{7}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>50</sup>, 135<sup>44</sup>, 141<sup>31</sup>, 147<sup>7</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>179</td>
 
<td>179</td>
<td><math>\{ 93^{3}, 99, 105^{6}, 111^{16}, 117^{40}, 123^{52}, 129^{58}, 135^{46}, 141^{13}, 147^{11}, 153^{8}, 159, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99, 105<sup>6</sup>, 111<sup>16</sup>, 117<sup>40</sup>, 123<sup>52</sup>, 129<sup>58</sup>, 135<sup>46</sup>, 141<sup>13</sup>, 147<sup>11</sup>, 153<sup>8</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>180</td>
 
<td>180</td>
<td><math>\{ 93, 99^{5}, 105^{8}, 111^{17}, 117^{32}, 123^{50}, 129^{58}, 135^{46}, 141^{23}, 147^{9}, 153^{6}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>17</sup>, 117<sup>32</sup>, 123<sup>50</sup>, 129<sup>58</sup>, 135<sup>46</sup>, 141<sup>23</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>181</td>
 
<td>181</td>
<td><math>\{ 99^{4}, 105^{11}, 111^{17}, 117^{40}, 123^{40}, 129^{50}, 135^{54}, 141^{24}, 147^{12}, 153^{3}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>11</sup>, 111<sup>17</sup>, 117<sup>40</sup>, 123<sup>40</sup>, 129<sup>50</sup>, 135<sup>54</sup>, 141<sup>24</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>182</td>
 
<td>182</td>
<td><math>\{ 93, 99^{3}, 105^{5}, 111^{20}, 117^{40}, 123^{52}, 129^{52}, 135^{42}, 141^{23}, 147^{9}, 153^{7}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>5</sup>, 111<sup>20</sup>, 117<sup>40</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>23</sup>, 147<sup>9</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>183</td>
 
<td>183</td>
<td><math>\{ 99^{4}, 105^{3}, 111^{25}, 117^{44}, 123^{42}, 129^{50}, 135^{44}, 141^{28}, 147^{10}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>3</sup>, 111<sup>25</sup>, 117<sup>44</sup>, 123<sup>42</sup>, 129<sup>50</sup>, 135<sup>44</sup>, 141<sup>28</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>184</td>
 
<td>184</td>
<td><math>\{ 93, 99, 105^{7}, 111^{18}, 117^{43}, 123^{52}, 129^{54}, 135^{42}, 141^{19}, 147^{11}, 153^{3}, 159^{3}, 165, 256 \}</math></td>
+
<td> 93, 99, 105<sup>7</sup>, 111<sup>18</sup>, 117<sup>43</sup>, 123<sup>52</sup>, 129<sup>54</sup>, 135<sup>42</sup>, 141<sup>19</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 159<sup>3</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>185</td>
 
<td>185</td>
<td><math>\{ 99^{3}, 105^{7}, 111^{25}, 117^{36}, 123^{42}, 129^{56}, 135^{46}, 141^{26}, 147^{11}, 153, 165^{2}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>25</sup>, 117<sup>36</sup>, 123<sup>42</sup>, 129<sup>56</sup>, 135<sup>46</sup>, 141<sup>26</sup>, 147<sup>11</sup>, 153, 165<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>186</td>
 
<td>186</td>
<td><math>\{ 93, 99^{5}, 105^{8}, 111^{15}, 117^{36}, 123^{56}, 129^{46}, 135^{40}, 141^{35}, 147^{11}, 153^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>56</sup>, 129<sup>46</sup>, 135<sup>40</sup>, 141<sup>35</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>187</td>
 
<td>187</td>
<td><math>\{ 93, 99, 105^{15}, 111^{17}, 117^{32}, 123^{46}, 129^{52}, 135^{54}, 141^{23}, 147^{9}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>15</sup>, 111<sup>17</sup>, 117<sup>32</sup>, 123<sup>46</sup>, 129<sup>52</sup>, 135<sup>54</sup>, 141<sup>23</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>188</td>
 
<td>188</td>
<td><math>\{ 87, 99^{5}, 105^{7}, 111^{15}, 117^{36}, 123^{50}, 129^{58}, 135^{47}, 141^{20}, 147^{9}, 153^{7}, 256 \}</math></td>
+
<td> 87, 99<sup>5</sup>, 105<sup>7</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>58</sup>, 135<sup>47</sup>, 141<sup>20</sup>, 147<sup>9</sup>, 153<sup>7</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>189</td>
 
<td>189</td>
<td><math>\{ 99^{4}, 105^{11}, 111^{13}, 117^{31}, 123^{62}, 129^{56}, 135^{40}, 141^{24}, 147^{6}, 153^{5}, 159^{2}, 165, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>11</sup>, 111<sup>13</sup>, 117<sup>31</sup>, 123<sup>62</sup>, 129<sup>56</sup>, 135<sup>40</sup>, 141<sup>24</sup>, 147<sup>6</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>190</td>
 
<td>190</td>
<td><math>\{ 99^{2}, 105^{14}, 111^{19}, 117^{30}, 123^{46}, 129^{62}, 135^{44}, 141^{18}, 147^{16}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>14</sup>, 111<sup>19</sup>, 117<sup>30</sup>, 123<sup>46</sup>, 129<sup>62</sup>, 135<sup>44</sup>, 141<sup>18</sup>, 147<sup>16</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>191</td>
 
<td>191</td>
<td><math>\{ 93, 99^{2}, 105^{11}, 111^{17}, 117^{38}, 123^{48}, 129^{50}, 135^{46}, 141^{25}, 147^{14}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>17</sup>, 117<sup>38</sup>, 123<sup>48</sup>, 129<sup>50</sup>, 135<sup>46</sup>, 141<sup>25</sup>, 147<sup>14</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>192</td>
 
<td>192</td>
<td><math>\{ 87, 99^{2}, 105^{7}, 111^{21}, 117^{36}, 123^{52}, 129^{54}, 135^{39}, 141^{28}, 147^{10}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 87, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>21</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>54</sup>, 135<sup>39</sup>, 141<sup>28</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>193</td>
 
<td>193</td>
<td><math>\{ 99^{3}, 105^{9}, 111^{24}, 117^{30}, 123^{46}, 129^{60}, 135^{44}, 141^{26}, 147^{7}, 153^{3}, 159^{3}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>24</sup>, 117<sup>30</sup>, 123<sup>46</sup>, 129<sup>60</sup>, 135<sup>44</sup>, 141<sup>26</sup>, 147<sup>7</sup>, 153<sup>3</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>194</td>
 
<td>194</td>
<td><math>\{ 93, 99^{3}, 105^{7}, 111^{23}, 117^{32}, 123^{45}, 129^{60}, 135^{48}, 141^{23}, 147^{7}, 153^{5}, 171, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>23</sup>, 117<sup>32</sup>, 123<sup>45</sup>, 129<sup>60</sup>, 135<sup>48</sup>, 141<sup>23</sup>, 147<sup>7</sup>, 153<sup>5</sup>, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>195</td>
 
<td>195</td>
<td><math>\{ 75, 99^{4}, 105^{5}, 111^{18}, 117^{38}, 123^{49}, 129^{56}, 135^{44}, 141^{26}, 147^{10}, 153^{3}, 159, 256 \}</math></td>
+
<td> 75, 99<sup>4</sup>, 105<sup>5</sup>, 111<sup>18</sup>, 117<sup>38</sup>, 123<sup>49</sup>, 129<sup>56</sup>, 135<sup>44</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>196</td>
 
<td>196</td>
<td><math>\{ 99^{3}, 105^{15}, 111^{15}, 117^{28}, 123^{60}, 129^{46}, 135^{40}, 141^{36}, 147^{9}, 153^{3}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>15</sup>, 111<sup>15</sup>, 117<sup>28</sup>, 123<sup>60</sup>, 129<sup>46</sup>, 135<sup>40</sup>, 141<sup>36</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>197</td>
 
<td>197</td>
<td><math>\{ 81, 105^{7}, 111^{25}, 117^{34}, 123^{54}, 129^{53}, 135^{36}, 141^{30}, 147^{10}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 81, 105<sup>7</sup>, 111<sup>25</sup>, 117<sup>34</sup>, 123<sup>54</sup>, 129<sup>53</sup>, 135<sup>36</sup>, 141<sup>30</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>198</td>
 
<td>198</td>
<td><math>\{ 93^{3}, 99^{5}, 105^{11}, 111^{27}, 117^{30}, 123^{38}, 129^{46}, 135^{42}, 141^{31}, 147^{13}, 153^{7}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99<sup>5</sup>, 105<sup>11</sup>, 111<sup>27</sup>, 117<sup>30</sup>, 123<sup>38</sup>, 129<sup>46</sup>, 135<sup>42</sup>, 141<sup>31</sup>, 147<sup>13</sup>, 153<sup>7</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>199</td>
 
<td>199</td>
<td><math>\{ 99^{4}, 105^{9}, 111^{19}, 117^{34}, 123^{52}, 129^{52}, 135^{42}, 141^{30}, 147^{8}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>34</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>30</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>200</td>
 
<td>200</td>
<td><math>\{ 99^{4}, 105^{7}, 111^{20}, 117^{38}, 123^{50}, 129^{52}, 135^{42}, 141^{26}, 147^{10}, 153^{5}, 159, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>7</sup>, 111<sup>20</sup>, 117<sup>38</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>201</td>
 
<td>201</td>
<td><math>\{ 87, 93, 99^{2}, 105^{5}, 111^{19}, 117^{38}, 123^{56}, 129^{54}, 135^{35}, 141^{25}, 147^{14}, 153^{5}, 256 \}</math></td>
+
<td> 87, 93, 99<sup>2</sup>, 105<sup>5</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>56</sup>, 129<sup>54</sup>, 135<sup>35</sup>, 141<sup>25</sup>, 147<sup>14</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>202</td>
 
<td>202</td>
<td><math>\{ 105^{9}, 111^{23}, 117^{37}, 123^{56}, 129^{50}, 135^{38}, 141^{26}, 147^{8}, 153^{5}, 159^{2}, 165, 256 \}</math></td>
+
<td> 105<sup>9</sup>, 111<sup>23</sup>, 117<sup>37</sup>, 123<sup>56</sup>, 129<sup>50</sup>, 135<sup>38</sup>, 141<sup>26</sup>, 147<sup>8</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>203</td>
 
<td>203</td>
<td><math>\{ 87, 93, 99^{5}, 105^{13}, 111^{21}, 117^{33}, 123^{46}, 129^{44}, 135^{39}, 141^{29}, 147^{13}, 153^{7}, 159^{2}, 165, 256 \}</math></td>
+
<td> 87, 93, 99<sup>5</sup>, 105<sup>13</sup>, 111<sup>21</sup>, 117<sup>33</sup>, 123<sup>46</sup>, 129<sup>44</sup>, 135<sup>39</sup>, 141<sup>29</sup>, 147<sup>13</sup>, 153<sup>7</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>204</td>
 
<td>204</td>
<td><math>\{ 99^{2}, 105^{7}, 111^{26}, 117^{36}, 123^{44}, 129^{58}, 135^{44}, 141^{20}, 147^{10}, 153^{7}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>26</sup>, 117<sup>36</sup>, 123<sup>44</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>20</sup>, 147<sup>10</sup>, 153<sup>7</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>205</td>
 
<td>205</td>
<td><math>\{ 93^{2}, 99^{2}, 105^{7}, 111^{17}, 117^{41}, 123^{48}, 129^{54}, 135^{46}, 141^{20}, 147^{14}, 153^{3}, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>17</sup>, 117<sup>41</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>46</sup>, 141<sup>20</sup>, 147<sup>14</sup>, 153<sup>3</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>206</td>
 
<td>206</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{21}, 117^{26}, 123^{52}, 129^{66}, 135^{40}, 141^{21}, 147^{9}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>21</sup>, 117<sup>26</sup>, 123<sup>52</sup>, 129<sup>66</sup>, 135<sup>40</sup>, 141<sup>21</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>207</td>
 
<td>207</td>
<td><math>\{ 93, 99^{2}, 105^{7}, 111^{26}, 117^{34}, 123^{44}, 129^{54}, 135^{44}, 141^{29}, 147^{10}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>26</sup>, 117<sup>34</sup>, 123<sup>44</sup>, 129<sup>54</sup>, 135<sup>44</sup>, 141<sup>29</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>208</td>
 
<td>208</td>
<td><math>\{ 99^{4}, 105^{9}, 111^{20}, 117^{31}, 123^{50}, 129^{60}, 135^{42}, 141^{24}, 147^{10}, 153^{3}, 159, 165, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>31</sup>, 123<sup>50</sup>, 129<sup>60</sup>, 135<sup>42</sup>, 141<sup>24</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>209</td>
 
<td>209</td>
<td><math>\{ 93^{3}, 99^{3}, 105^{3}, 111^{23}, 117^{32}, 123^{46}, 129^{64}, 135^{46}, 141^{21}, 147^{7}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>3</sup>, 99<sup>3</sup>, 105<sup>3</sup>, 111<sup>23</sup>, 117<sup>32</sup>, 123<sup>46</sup>, 129<sup>64</sup>, 135<sup>46</sup>, 141<sup>21</sup>, 147<sup>7</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>210</td>
 
<td>210</td>
<td><math>\{ 93, 99^{4}, 105^{4}, 111^{20}, 117^{44}, 123^{46}, 129^{46}, 135^{50}, 141^{27}, 147^{6}, 153^{6}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>4</sup>, 111<sup>20</sup>, 117<sup>44</sup>, 123<sup>46</sup>, 129<sup>46</sup>, 135<sup>50</sup>, 141<sup>27</sup>, 147<sup>6</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>211</td>
 
<td>211</td>
<td><math>\{ 93, 99^{2}, 105^{10}, 111^{18}, 117^{38}, 123^{48}, 129^{52}, 135^{44}, 141^{25}, 147^{14}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>10</sup>, 111<sup>18</sup>, 117<sup>38</sup>, 123<sup>48</sup>, 129<sup>52</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>212</td>
 
<td>212</td>
<td><math>\{ 93, 99^{3}, 105^{6}, 111^{23}, 117^{36}, 123^{48}, 129^{54}, 135^{40}, 141^{27}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>6</sup>, 111<sup>23</sup>, 117<sup>36</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>40</sup>, 141<sup>27</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>213</td>
 
<td>213</td>
<td><math>\{ 93^{2}, 99^{6}, 105^{3}, 111^{18}, 117^{36}, 123^{48}, 129^{58}, 135^{44}, 141^{26}, 147^{10}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>6</sup>, 105<sup>3</sup>, 111<sup>18</sup>, 117<sup>36</sup>, 123<sup>48</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>214</td>
 
<td>214</td>
<td><math>\{ 75, 93^{2}, 105^{10}, 111^{17}, 117^{30}, 123^{57}, 129^{50}, 135^{46}, 141^{32}, 147^{6}, 153^{4}, 256 \}</math></td>
+
<td> 75, 93<sup>2</sup>, 105<sup>10</sup>, 111<sup>17</sup>, 117<sup>30</sup>, 123<sup>57</sup>, 129<sup>50</sup>, 135<sup>46</sup>, 141<sup>32</sup>, 147<sup>6</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>215</td>
 
<td>215</td>
<td><math>\{ 87, 99^{3}, 105^{8}, 111^{18}, 117^{34}, 123^{52}, 129^{58}, 135^{43}, 141^{22}, 147^{9}, 153^{6}, 159, 256 \}</math></td>
+
<td> 87, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>18</sup>, 117<sup>34</sup>, 123<sup>52</sup>, 129<sup>58</sup>, 135<sup>43</sup>, 141<sup>22</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>216</td>
 
<td>216</td>
<td><math>\{ 99, 105^{8}, 111^{25}, 117^{36}, 123^{52}, 129^{52}, 135^{36}, 141^{28}, 147^{11}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 99, 105<sup>8</sup>, 111<sup>25</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>36</sup>, 141<sup>28</sup>, 147<sup>11</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>217</td>
 
<td>217</td>
<td><math>\{ 99^{2}, 105^{11}, 111^{18}, 117^{40}, 123^{46}, 129^{50}, 135^{50}, 141^{24}, 147^{8}, 153^{3}, 159^{3}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>11</sup>, 111<sup>18</sup>, 117<sup>40</sup>, 123<sup>46</sup>, 129<sup>50</sup>, 135<sup>50</sup>, 141<sup>24</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>218</td>
 
<td>218</td>
<td><math>\{ 93, 99, 105^{10}, 111^{25}, 117^{28}, 123^{50}, 129^{58}, 135^{38}, 141^{27}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>10</sup>, 111<sup>25</sup>, 117<sup>28</sup>, 123<sup>50</sup>, 129<sup>58</sup>, 135<sup>38</sup>, 141<sup>27</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>219</td>
 
<td>219</td>
<td><math>\{ 99^{6}, 105^{9}, 111^{15}, 117^{32}, 123^{54}, 129^{58}, 135^{40}, 141^{24}, 147^{12}, 153^{5}, 256 \}</math></td>
+
<td> 99<sup>6</sup>, 105<sup>9</sup>, 111<sup>15</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>58</sup>, 135<sup>40</sup>, 141<sup>24</sup>, 147<sup>12</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>220</td>
 
<td>220</td>
<td><math>\{ 81, 99^{2}, 105^{7}, 111^{19}, 117^{42}, 123^{44}, 129^{53}, 135^{50}, 141^{22}, 147^{10}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 81, 99<sup>2</sup>, 105<sup>7</sup>, 111<sup>19</sup>, 117<sup>42</sup>, 123<sup>44</sup>, 129<sup>53</sup>, 135<sup>50</sup>, 141<sup>22</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>221</td>
 
<td>221</td>
<td><math>\{ 93, 99^{3}, 105^{10}, 111^{15}, 117^{36}, 123^{52}, 129^{58}, 135^{40}, 141^{19}, 147^{17}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>58</sup>, 135<sup>40</sup>, 141<sup>19</sup>, 147<sup>17</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>222</td>
 
<td>222</td>
<td><math>\{ 93, 99^{2}, 105^{8}, 111^{21}, 117^{36}, 123^{52}, 129^{50}, 135^{42}, 141^{27}, 147^{10}, 153^{6}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>50</sup>, 135<sup>42</sup>, 141<sup>27</sup>, 147<sup>10</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>223</td>
 
<td>223</td>
<td><math>\{ 87, 99^{2}, 105^{9}, 111^{17}, 117^{35}, 123^{58}, 129^{52}, 135^{37}, 141^{28}, 147^{12}, 153^{3}, 165, 256 \}</math></td>
+
<td> 87, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>17</sup>, 117<sup>35</sup>, 123<sup>58</sup>, 129<sup>52</sup>, 135<sup>37</sup>, 141<sup>28</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>224</td>
 
<td>224</td>
<td><math>\{ 81, 105^{10}, 111^{19}, 117^{40}, 123^{50}, 129^{49}, 135^{44}, 141^{24}, 147^{14}, 153^{4}, 256 \}</math></td>
+
<td> 81, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>40</sup>, 123<sup>50</sup>, 129<sup>49</sup>, 135<sup>44</sup>, 141<sup>24</sup>, 147<sup>14</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>225</td>
 
<td>225</td>
<td><math>\{ 99^{4}, 105^{10}, 111^{15}, 117^{44}, 123^{42}, 129^{48}, 135^{56}, 141^{20}, 147^{10}, 153^{6}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>10</sup>, 111<sup>15</sup>, 117<sup>44</sup>, 123<sup>42</sup>, 129<sup>48</sup>, 135<sup>56</sup>, 141<sup>20</sup>, 147<sup>10</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>226</td>
 
<td>226</td>
<td><math>\{ 87^{2}, 93, 99^{2}, 105^{14}, 111^{24}, 117^{31}, 123^{46}, 129^{44}, 135^{36}, 141^{31}, 147^{16}, 153^{6}, 159, 165, 256 \}</math></td>
+
<td> 87<sup>2</sup>, 93, 99<sup>2</sup>, 105<sup>14</sup>, 111<sup>24</sup>, 117<sup>31</sup>, 123<sup>46</sup>, 129<sup>44</sup>, 135<sup>36</sup>, 141<sup>31</sup>, 147<sup>16</sup>, 153<sup>6</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>227</td>
 
<td>227</td>
<td><math>\{ 99^{4}, 105^{8}, 111^{22}, 117^{38}, 123^{44}, 129^{46}, 135^{48}, 141^{34}, 147^{8}, 153^{2}, 159, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>8</sup>, 111<sup>22</sup>, 117<sup>38</sup>, 123<sup>44</sup>, 129<sup>46</sup>, 135<sup>48</sup>, 141<sup>34</sup>, 147<sup>8</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>228</td>
 
<td>228</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{7}, 111^{15}, 117^{41}, 123^{48}, 129^{54}, 135^{48}, 141^{20}, 147^{13}, 153^{3}, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>15</sup>, 117<sup>41</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>48</sup>, 141<sup>20</sup>, 147<sup>13</sup>, 153<sup>3</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>229</td>
 
<td>229</td>
<td><math>\{ 93, 99^{4}, 105^{8}, 111^{21}, 117^{32}, 123^{48}, 129^{54}, 135^{42}, 141^{31}, 147^{12}, 153^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>32</sup>, 123<sup>48</sup>, 129<sup>54</sup>, 135<sup>42</sup>, 141<sup>31</sup>, 147<sup>12</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>230</td>
 
<td>230</td>
<td><math>\{ 93, 99, 105^{6}, 111^{25}, 117^{35}, 123^{52}, 129^{56}, 135^{36}, 141^{27}, 147^{11}, 153^{2}, 159^{2}, 165, 256 \}</math></td>
+
<td> 93, 99, 105<sup>6</sup>, 111<sup>25</sup>, 117<sup>35</sup>, 123<sup>52</sup>, 129<sup>56</sup>, 135<sup>36</sup>, 141<sup>27</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>231</td>
 
<td>231</td>
<td><math>\{ 105^{9}, 111^{24}, 117^{37}, 123^{52}, 129^{50}, 135^{44}, 141^{26}, 147^{4}, 153^{5}, 159^{3}, 165, 256 \}</math></td>
+
<td> 105<sup>9</sup>, 111<sup>24</sup>, 117<sup>37</sup>, 123<sup>52</sup>, 129<sup>50</sup>, 135<sup>44</sup>, 141<sup>26</sup>, 147<sup>4</sup>, 153<sup>5</sup>, 159<sup>3</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>232</td>
 
<td>232</td>
<td><math>\{ 93, 99^{3}, 105^{8}, 111^{19}, 117^{34}, 123^{56}, 129^{52}, 135^{36}, 141^{29}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>19</sup>, 117<sup>34</sup>, 123<sup>56</sup>, 129<sup>52</sup>, 135<sup>36</sup>, 141<sup>29</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>233</td>
 
<td>233</td>
<td><math>\{ 81, 87, 93, 99^{6}, 105^{11}, 111^{16}, 117^{34}, 123^{52}, 129^{43}, 135^{37}, 141^{29}, 147^{14}, 153^{9}, 159, 256 \}</math></td>
+
<td> 81, 87, 93, 99<sup>6</sup>, 105<sup>11</sup>, 111<sup>16</sup>, 117<sup>34</sup>, 123<sup>52</sup>, 129<sup>43</sup>, 135<sup>37</sup>, 141<sup>29</sup>, 147<sup>14</sup>, 153<sup>9</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>234</td>
 
<td>234</td>
<td><math>\{ 93, 99^{4}, 105^{6}, 111^{20}, 117^{32}, 123^{54}, 129^{62}, 135^{34}, 141^{23}, 147^{14}, 153^{4}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>6</sup>, 111<sup>20</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>62</sup>, 135<sup>34</sup>, 141<sup>23</sup>, 147<sup>14</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>235</td>
 
<td>235</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{20}, 117^{32}, 123^{52}, 129^{52}, 135^{42}, 141^{31}, 147^{9}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>32</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>31</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>236</td>
 
<td>236</td>
<td><math>\{ 99^{3}, 105^{12}, 111^{15}, 117^{34}, 123^{54}, 129^{58}, 135^{38}, 141^{22}, 147^{15}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>12</sup>, 111<sup>15</sup>, 117<sup>34</sup>, 123<sup>54</sup>, 129<sup>58</sup>, 135<sup>38</sup>, 141<sup>22</sup>, 147<sup>15</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>237</td>
 
<td>237</td>
<td><math>\{ 93, 99^{5}, 105^{8}, 111^{21}, 117^{30}, 123^{44}, 129^{56}, 135^{48}, 141^{33}, 147^{7}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>30</sup>, 123<sup>44</sup>, 129<sup>56</sup>, 135<sup>48</sup>, 141<sup>33</sup>, 147<sup>7</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>238</td>
 
<td>238</td>
<td><math>\{ 99^{3}, 105^{8}, 111^{23}, 117^{36}, 123^{48}, 129^{52}, 135^{40}, 141^{28}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>23</sup>, 117<sup>36</sup>, 123<sup>48</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>28</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>239</td>
 
<td>239</td>
<td><math>\{ 99^{4}, 105^{4}, 111^{24}, 117^{42}, 123^{42}, 129^{54}, 135^{46}, 141^{22}, 147^{10}, 153^{6}, 159, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>4</sup>, 111<sup>24</sup>, 117<sup>42</sup>, 123<sup>42</sup>, 129<sup>54</sup>, 135<sup>46</sup>, 141<sup>22</sup>, 147<sup>10</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>240</td>
 
<td>240</td>
<td><math>\{ 93, 99, 105^{10}, 111^{21}, 117^{34}, 123^{54}, 129^{48}, 135^{42}, 141^{29}, 147^{9}, 153^{6}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>10</sup>, 111<sup>21</sup>, 117<sup>34</sup>, 123<sup>54</sup>, 129<sup>48</sup>, 135<sup>42</sup>, 141<sup>29</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>241</td>
 
<td>241</td>
<td><math>\{ 93, 99^{3}, 105^{6}, 111^{20}, 117^{38}, 123^{52}, 129^{52}, 135^{42}, 141^{25}, 147^{9}, 153^{6}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>6</sup>, 111<sup>20</sup>, 117<sup>38</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>25</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>242</td>
 
<td>242</td>
<td><math>\{ 93^{2}, 99^{4}, 105^{9}, 111^{13}, 117^{36}, 123^{50}, 129^{54}, 135^{48}, 141^{26}, 147^{10}, 153, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>4</sup>, 105<sup>9</sup>, 111<sup>13</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>54</sup>, 135<sup>48</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>243</td>
 
<td>243</td>
<td><math>\{ 93, 99^{5}, 105^{14}, 111^{27}, 117^{31}, 123^{38}, 129^{44}, 135^{42}, 141^{31}, 147^{13}, 153^{6}, 159^{2}, 165, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>14</sup>, 111<sup>27</sup>, 117<sup>31</sup>, 123<sup>38</sup>, 129<sup>44</sup>, 135<sup>42</sup>, 141<sup>31</sup>, 147<sup>13</sup>, 153<sup>6</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>244</td>
 
<td>244</td>
<td><math>\{ 99^{4}, 105^{11}, 111^{16}, 117^{38}, 123^{46}, 129^{52}, 135^{46}, 141^{26}, 147^{14}, 153, 159, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>11</sup>, 111<sup>16</sup>, 117<sup>38</sup>, 123<sup>46</sup>, 129<sup>52</sup>, 135<sup>46</sup>, 141<sup>26</sup>, 147<sup>14</sup>, 153, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>245</td>
 
<td>245</td>
<td><math>\{ 99^{3}, 105^{12}, 111^{18}, 117^{32}, 123^{54}, 129^{48}, 135^{44}, 141^{32}, 147^{7}, 153^{4}, 159, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>12</sup>, 111<sup>18</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>48</sup>, 135<sup>44</sup>, 141<sup>32</sup>, 147<sup>7</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>246</td>
 
<td>246</td>
<td><math>\{ 93, 99, 105^{9}, 111^{20}, 117^{42}, 123^{48}, 129^{46}, 135^{42}, 141^{29}, 147^{15}, 153, 159, 256 \}</math></td>
+
<td> 93, 99, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>42</sup>, 123<sup>48</sup>, 129<sup>46</sup>, 135<sup>42</sup>, 141<sup>29</sup>, 147<sup>15</sup>, 153, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>247</td>
 
<td>247</td>
<td><math>\{ 93, 105^{12}, 111^{24}, 117^{28}, 123^{54}, 129^{50}, 135^{38}, 141^{35}, 147^{10}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 105<sup>12</sup>, 111<sup>24</sup>, 117<sup>28</sup>, 123<sup>54</sup>, 129<sup>50</sup>, 135<sup>38</sup>, 141<sup>35</sup>, 147<sup>10</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>248</td>
 
<td>248</td>
<td><math>\{ 93^{2}, 99^{6}, 105^{6}, 111^{27}, 117^{41}, 123^{40}, 129^{44}, 135^{34}, 141^{28}, 147^{18}, 153^{6}, 159^{2}, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>6</sup>, 105<sup>6</sup>, 111<sup>27</sup>, 117<sup>41</sup>, 123<sup>40</sup>, 129<sup>44</sup>, 135<sup>34</sup>, 141<sup>28</sup>, 147<sup>18</sup>, 153<sup>6</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>249</td>
 
<td>249</td>
<td><math>\{ 87, 93, 99^{2}, 105^{5}, 111^{26}, 117^{32}, 123^{42}, 129^{64}, 135^{43}, 141^{23}, 147^{12}, 153^{3}, 159, 256 \}</math></td>
+
<td> 87, 93, 99<sup>2</sup>, 105<sup>5</sup>, 111<sup>26</sup>, 117<sup>32</sup>, 123<sup>42</sup>, 129<sup>64</sup>, 135<sup>43</sup>, 141<sup>23</sup>, 147<sup>12</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>250</td>
 
<td>250</td>
<td><math>\{ 93, 99^{3}, 105^{4}, 111^{25}, 117^{34}, 123^{48}, 129^{64}, 135^{36}, 141^{21}, 147^{13}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>4</sup>, 111<sup>25</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>64</sup>, 135<sup>36</sup>, 141<sup>21</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>251</td>
 
<td>251</td>
<td><math>\{ 93^{2}, 99^{2}, 105^{9}, 111^{18}, 117^{38}, 123^{44}, 129^{52}, 135^{52}, 141^{24}, 147^{10}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>18</sup>, 117<sup>38</sup>, 123<sup>44</sup>, 129<sup>52</sup>, 135<sup>52</sup>, 141<sup>24</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>252</td>
 
<td>252</td>
<td><math>\{ 93, 99, 105^{19}, 111^{23}, 117^{32}, 123^{47}, 129^{44}, 135^{38}, 141^{23}, 147^{15}, 153^{9}, 159^{2}, 171, 256 \}</math></td>
+
<td> 93, 99, 105<sup>19</sup>, 111<sup>23</sup>, 117<sup>32</sup>, 123<sup>47</sup>, 129<sup>44</sup>, 135<sup>38</sup>, 141<sup>23</sup>, 147<sup>15</sup>, 153<sup>9</sup>, 159<sup>2</sup>, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>253</td>
 
<td>253</td>
<td><math>\{ 99^{2}, 105^{13}, 111^{17}, 117^{34}, 123^{52}, 129^{56}, 135^{38}, 141^{22}, 147^{18}, 153^{3}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>13</sup>, 111<sup>17</sup>, 117<sup>34</sup>, 123<sup>52</sup>, 129<sup>56</sup>, 135<sup>38</sup>, 141<sup>22</sup>, 147<sup>18</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>254</td>
 
<td>254</td>
<td><math>\{ 93, 99^{5}, 105^{21}, 111^{16}, 117^{28}, 123^{46}, 129^{44}, 135^{44}, 141^{27}, 147^{13}, 153^{7}, 159^{3}, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>21</sup>, 111<sup>16</sup>, 117<sup>28</sup>, 123<sup>46</sup>, 129<sup>44</sup>, 135<sup>44</sup>, 141<sup>27</sup>, 147<sup>13</sup>, 153<sup>7</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>255</td>
 
<td>255</td>
<td><math>\{ 87, 93, 99^{3}, 105^{7}, 111^{21}, 117^{34}, 123^{44}, 129^{54}, 135^{49}, 141^{29}, 147^{9}, 153^{3}, 256 \}</math></td>
+
<td> 87, 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>21</sup>, 117<sup>34</sup>, 123<sup>44</sup>, 129<sup>54</sup>, 135<sup>49</sup>, 141<sup>29</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>256</td>
 
<td>256</td>
<td><math>\{ 87, 93, 99^{4}, 105^{6}, 111^{19}, 117^{34}, 123^{48}, 129^{56}, 135^{43}, 141^{29}, 147^{12}, 153^{2}, 256 \}</math></td>
+
<td> 87, 93, 99<sup>4</sup>, 105<sup>6</sup>, 111<sup>19</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>56</sup>, 135<sup>43</sup>, 141<sup>29</sup>, 147<sup>12</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>257</td>
 
<td>257</td>
<td><math>\{ 99^{5}, 105^{9}, 111^{18}, 117^{34}, 123^{50}, 129^{52}, 135^{44}, 141^{30}, 147^{9}, 153^{3}, 159, 256 \}</math></td>
+
<td> 99<sup>5</sup>, 105<sup>9</sup>, 111<sup>18</sup>, 117<sup>34</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>44</sup>, 141<sup>30</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>258</td>
 
<td>258</td>
<td><math>\{ 93, 99, 105^{11}, 111^{19}, 117^{38}, 123^{48}, 129^{50}, 135^{44}, 141^{25}, 147^{15}, 153^{3}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>11</sup>, 111<sup>19</sup>, 117<sup>38</sup>, 123<sup>48</sup>, 129<sup>50</sup>, 135<sup>44</sup>, 141<sup>25</sup>, 147<sup>15</sup>, 153<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>259</td>
 
<td>259</td>
<td><math>\{ 93^{2}, 99, 105^{8}, 111^{20}, 117^{41}, 123^{44}, 129^{48}, 135^{50}, 141^{28}, 147^{11}, 159, 165, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99, 105<sup>8</sup>, 111<sup>20</sup>, 117<sup>41</sup>, 123<sup>44</sup>, 129<sup>48</sup>, 135<sup>50</sup>, 141<sup>28</sup>, 147<sup>11</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>260</td>
 
<td>260</td>
<td><math>\{ 93, 99^{2}, 105^{6}, 111^{24}, 117^{38}, 123^{50}, 129^{48}, 135^{38}, 141^{33}, 147^{12}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>6</sup>, 111<sup>24</sup>, 117<sup>38</sup>, 123<sup>50</sup>, 129<sup>48</sup>, 135<sup>38</sup>, 141<sup>33</sup>, 147<sup>12</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>261</td>
 
<td>261</td>
<td><math>\{ 93^{2}, 99^{4}, 105^{6}, 111^{15}, 117^{36}, 123^{54}, 129^{54}, 135^{48}, 141^{24}, 147^{6}, 153^{4}, 165^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>4</sup>, 105<sup>6</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>54</sup>, 129<sup>54</sup>, 135<sup>48</sup>, 141<sup>24</sup>, 147<sup>6</sup>, 153<sup>4</sup>, 165<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>262</td>
 
<td>262</td>
<td><math>\{ 93, 99^{4}, 105^{10}, 111^{19}, 117^{28}, 123^{50}, 129^{58}, 135^{44}, 141^{27}, 147^{10}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>28</sup>, 123<sup>50</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>27</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>263</td>
 
<td>263</td>
<td><math>\{ 105^{13}, 111^{18}, 117^{37}, 123^{56}, 129^{50}, 135^{36}, 141^{26}, 147^{16}, 153, 159, 165, 256 \}</math></td>
+
<td> 105<sup>13</sup>, 111<sup>18</sup>, 117<sup>37</sup>, 123<sup>56</sup>, 129<sup>50</sup>, 135<sup>36</sup>, 141<sup>26</sup>, 147<sup>16</sup>, 153, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>264</td>
 
<td>264</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{8}, 111^{15}, 117^{36}, 123^{52}, 129^{60}, 135^{40}, 141^{18}, 147^{17}, 153^{4}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>15</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>60</sup>, 135<sup>40</sup>, 141<sup>18</sup>, 147<sup>17</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>265</td>
 
<td>265</td>
<td><math>\{ 87, 99^{5}, 105^{6}, 111^{15}, 117^{41}, 123^{50}, 129^{48}, 135^{47}, 141^{30}, 147^{9}, 153^{2}, 165, 256 \}</math></td>
+
<td> 87, 99<sup>5</sup>, 105<sup>6</sup>, 111<sup>15</sup>, 117<sup>41</sup>, 123<sup>50</sup>, 129<sup>48</sup>, 135<sup>47</sup>, 141<sup>30</sup>, 147<sup>9</sup>, 153<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>266</td>
 
<td>266</td>
<td><math>\{ 93, 99^{3}, 105^{6}, 111^{23}, 117^{34}, 123^{48}, 129^{56}, 135^{44}, 141^{29}, 147^{5}, 153^{2}, 159^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>6</sup>, 111<sup>23</sup>, 117<sup>34</sup>, 123<sup>48</sup>, 129<sup>56</sup>, 135<sup>44</sup>, 141<sup>29</sup>, 147<sup>5</sup>, 153<sup>2</sup>, 159<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>267</td>
 
<td>267</td>
<td><math>\{ 93, 99^{3}, 105^{10}, 111^{17}, 117^{28}, 123^{60}, 129^{58}, 135^{36}, 141^{27}, 147^{9}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>17</sup>, 117<sup>28</sup>, 123<sup>60</sup>, 129<sup>58</sup>, 135<sup>36</sup>, 141<sup>27</sup>, 147<sup>9</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>268</td>
 
<td>268</td>
<td><math>\{ 93, 99^{4}, 105^{6}, 111^{19}, 117^{36}, 123^{50}, 129^{58}, 135^{44}, 141^{19}, 147^{10}, 153^{8}, 256 \}</math></td>
+
<td> 93, 99<sup>4</sup>, 105<sup>6</sup>, 111<sup>19</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>58</sup>, 135<sup>44</sup>, 141<sup>19</sup>, 147<sup>10</sup>, 153<sup>8</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>269</td>
 
<td>269</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{20}, 117^{30}, 123^{52}, 129^{58}, 135^{42}, 141^{25}, 147^{9}, 153^{5}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>30</sup>, 123<sup>52</sup>, 129<sup>58</sup>, 135<sup>42</sup>, 141<sup>25</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>270</td>
 
<td>270</td>
<td><math>\{ 99, 105^{13}, 111^{21}, 117^{32}, 123^{54}, 129^{46}, 135^{42}, 141^{32}, 147^{9}, 153^{5}, 256 \}</math></td>
+
<td> 99, 105<sup>13</sup>, 111<sup>21</sup>, 117<sup>32</sup>, 123<sup>54</sup>, 129<sup>46</sup>, 135<sup>42</sup>, 141<sup>32</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>271</td>
 
<td>271</td>
<td><math>\{ 99^{3}, 105^{4}, 111^{21}, 117^{43}, 123^{52}, 129^{54}, 135^{40}, 141^{20}, 147^{9}, 153^{6}, 159^{2}, 165, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>4</sup>, 111<sup>21</sup>, 117<sup>43</sup>, 123<sup>52</sup>, 129<sup>54</sup>, 135<sup>40</sup>, 141<sup>20</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>272</td>
 
<td>272</td>
<td><math>\{ 99^{5}, 105^{8}, 111^{17}, 117^{36}, 123^{52}, 129^{52}, 135^{44}, 141^{28}, 147^{7}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>17</sup>, 117<sup>36</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>44</sup>, 141<sup>28</sup>, 147<sup>7</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>273</td>
 
<td>273</td>
<td><math>\{ 99^{3}, 105^{10}, 111^{19}, 117^{36}, 123^{46}, 129^{60}, 135^{42}, 141^{20}, 147^{15}, 153^{2}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>36</sup>, 123<sup>46</sup>, 129<sup>60</sup>, 135<sup>42</sup>, 141<sup>20</sup>, 147<sup>15</sup>, 153<sup>2</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>274</td>
 
<td>274</td>
<td><math>\{ 93, 99^{3}, 105^{8}, 111^{21}, 117^{36}, 123^{50}, 129^{46}, 135^{42}, 141^{35}, 147^{11}, 153^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>46</sup>, 135<sup>42</sup>, 141<sup>35</sup>, 147<sup>11</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>275</td>
 
<td>275</td>
<td><math>\{ 93^{2}, 99, 105^{7}, 111^{27}, 117^{28}, 123^{46}, 129^{62}, 135^{42}, 141^{26}, 147^{9}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99, 105<sup>7</sup>, 111<sup>27</sup>, 117<sup>28</sup>, 123<sup>46</sup>, 129<sup>62</sup>, 135<sup>42</sup>, 141<sup>26</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>276</td>
 
<td>276</td>
<td><math>\{ 99^{6}, 105^{5}, 111^{22}, 117^{34}, 123^{42}, 129^{64}, 135^{46}, 141^{22}, 147^{8}, 153^{3}, 159^{3}, 256 \}</math></td>
+
<td> 99<sup>6</sup>, 105<sup>5</sup>, 111<sup>22</sup>, 117<sup>34</sup>, 123<sup>42</sup>, 129<sup>64</sup>, 135<sup>46</sup>, 141<sup>22</sup>, 147<sup>8</sup>, 153<sup>3</sup>, 159<sup>3</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>277</td>
 
<td>277</td>
<td><math>\{ 99^{2}, 105^{9}, 111^{23}, 117^{36}, 123^{50}, 129^{50}, 135^{40}, 141^{28}, 147^{12}, 153^{5}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>9</sup>, 111<sup>23</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>50</sup>, 135<sup>40</sup>, 141<sup>28</sup>, 147<sup>12</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>278</td>
 
<td>278</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{3}, 111^{21}, 117^{42}, 123^{50}, 129^{48}, 135^{42}, 141^{28}, 147^{11}, 153^{5}, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>3</sup>, 111<sup>21</sup>, 117<sup>42</sup>, 123<sup>50</sup>, 129<sup>48</sup>, 135<sup>42</sup>, 141<sup>28</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>279</td>
 
<td>279</td>
<td><math>\{ 93^{5}, 99, 105^{20}, 111^{5}, 117^{50}, 123^{33}, 129^{44}, 135^{56}, 141^{9}, 147^{29}, 159^{2}, 171, 256 \}</math></td>
+
<td> 93<sup>5</sup>, 99, 105<sup>20</sup>, 111<sup>5</sup>, 117<sup>50</sup>, 123<sup>33</sup>, 129<sup>44</sup>, 135<sup>56</sup>, 141<sup>9</sup>, 147<sup>29</sup>, 159<sup>2</sup>, 171, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>280</td>
 
<td>280</td>
<td><math>\{ 99^{2}, 105^{10}, 111^{22}, 117^{32}, 123^{52}, 129^{56}, 135^{40}, 141^{24}, 147^{10}, 153^{6}, 159, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>10</sup>, 111<sup>22</sup>, 117<sup>32</sup>, 123<sup>52</sup>, 129<sup>56</sup>, 135<sup>40</sup>, 141<sup>24</sup>, 147<sup>10</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>281</td>
 
<td>281</td>
<td><math>\{ 93, 99^{3}, 105^{11}, 111^{21}, 117^{24}, 123^{50}, 129^{64}, 135^{42}, 141^{23}, 147^{11}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>11</sup>, 111<sup>21</sup>, 117<sup>24</sup>, 123<sup>50</sup>, 129<sup>64</sup>, 135<sup>42</sup>, 141<sup>23</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>282</td>
 
<td>282</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{20}, 117^{32}, 123^{52}, 129^{52}, 135^{42}, 141^{31}, 147^{9}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>20</sup>, 117<sup>32</sup>, 123<sup>52</sup>, 129<sup>52</sup>, 135<sup>42</sup>, 141<sup>31</sup>, 147<sup>9</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>283</td>
 
<td>283</td>
<td><math>\{ 75, 93, 99, 105^{3}, 111^{18}, 117^{43}, 123^{59}, 129^{50}, 135^{36}, 141^{27}, 147^{11}, 153^{3}, 159, 165, 256 \}</math></td>
+
<td> 75, 93, 99, 105<sup>3</sup>, 111<sup>18</sup>, 117<sup>43</sup>, 123<sup>59</sup>, 129<sup>50</sup>, 135<sup>36</sup>, 141<sup>27</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 159, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>284</td>
 
<td>284</td>
<td><math>\{ 93, 99^{3}, 105^{8}, 111^{15}, 117^{44}, 123^{48}, 129^{50}, 135^{48}, 141^{19}, 147^{13}, 153^{6}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>15</sup>, 117<sup>44</sup>, 123<sup>48</sup>, 129<sup>50</sup>, 135<sup>48</sup>, 141<sup>19</sup>, 147<sup>13</sup>, 153<sup>6</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>285</td>
 
<td>285</td>
<td><math>\{ 93, 99^{3}, 105^{7}, 111^{19}, 117^{33}, 123^{58}, 129^{56}, 135^{34}, 141^{29}, 147^{11}, 153, 159^{2}, 165, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>19</sup>, 117<sup>33</sup>, 123<sup>58</sup>, 129<sup>56</sup>, 135<sup>34</sup>, 141<sup>29</sup>, 147<sup>11</sup>, 153, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>286</td>
 
<td>286</td>
<td><math>\{ 93, 99^{5}, 105^{16}, 111^{24}, 117^{30}, 123^{44}, 129^{40}, 135^{38}, 141^{33}, 147^{15}, 153^{8}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>5</sup>, 105<sup>16</sup>, 111<sup>24</sup>, 117<sup>30</sup>, 123<sup>44</sup>, 129<sup>40</sup>, 135<sup>38</sup>, 141<sup>33</sup>, 147<sup>15</sup>, 153<sup>8</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>287</td>
 
<td>287</td>
<td><math>\{ 93, 99^{2}, 105^{8}, 111^{18}, 117^{44}, 123^{48}, 129^{46}, 135^{44}, 141^{27}, 147^{14}, 153^{2}, 159, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>18</sup>, 117<sup>44</sup>, 123<sup>48</sup>, 129<sup>46</sup>, 135<sup>44</sup>, 141<sup>27</sup>, 147<sup>14</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>288</td>
 
<td>288</td>
<td><math>\{ 99^{3}, 105^{10}, 111^{19}, 117^{42}, 123^{40}, 129^{50}, 135^{52}, 141^{22}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>10</sup>, 111<sup>19</sup>, 117<sup>42</sup>, 123<sup>40</sup>, 129<sup>50</sup>, 135<sup>52</sup>, 141<sup>22</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>289</td>
 
<td>289</td>
<td><math>\{ 87, 105^{9}, 111^{19}, 117^{42}, 123^{50}, 129^{52}, 135^{41}, 141^{22}, 147^{14}, 153^{3}, 159^{2}, 256 \}</math></td>
+
<td> 87, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>42</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>41</sup>, 141<sup>22</sup>, 147<sup>14</sup>, 153<sup>3</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>290</td>
 
<td>290</td>
<td><math>\{ 93, 99^{3}, 105^{7}, 111^{21}, 117^{35}, 123^{50}, 129^{54}, 135^{42}, 141^{27}, 147^{11}, 153^{3}, 165, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>21</sup>, 117<sup>35</sup>, 123<sup>50</sup>, 129<sup>54</sup>, 135<sup>42</sup>, 141<sup>27</sup>, 147<sup>11</sup>, 153<sup>3</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>291</td>
 
<td>291</td>
<td><math>\{ 93^{2}, 99^{3}, 105^{9}, 111^{12}, 117^{40}, 123^{52}, 129^{50}, 135^{50}, 141^{22}, 147^{9}, 153^{5}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>12</sup>, 117<sup>40</sup>, 123<sup>52</sup>, 129<sup>50</sup>, 135<sup>50</sup>, 141<sup>22</sup>, 147<sup>9</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>292</td>
 
<td>292</td>
<td><math>\{ 93, 99^{2}, 105^{8}, 111^{21}, 117^{38}, 123^{52}, 129^{44}, 135^{42}, 141^{33}, 147^{10}, 153^{4}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>38</sup>, 123<sup>52</sup>, 129<sup>44</sup>, 135<sup>42</sup>, 141<sup>33</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>293</td>
 
<td>293</td>
<td><math>\{ 99, 105^{10}, 111^{25}, 117^{34}, 123^{50}, 129^{50}, 135^{38}, 141^{30}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 99, 105<sup>10</sup>, 111<sup>25</sup>, 117<sup>34</sup>, 123<sup>50</sup>, 129<sup>50</sup>, 135<sup>38</sup>, 141<sup>30</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>294</td>
 
<td>294</td>
<td><math>\{ 99^{2}, 105^{18}, 111^{15}, 117^{32}, 123^{46}, 129^{44}, 135^{56}, 141^{32}, 147^{8}, 153^{2}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>18</sup>, 111<sup>15</sup>, 117<sup>32</sup>, 123<sup>46</sup>, 129<sup>44</sup>, 135<sup>56</sup>, 141<sup>32</sup>, 147<sup>8</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>295</td>
 
<td>295</td>
<td><math>\{ 93, 99^{3}, 105^{9}, 111^{19}, 117^{30}, 123^{56}, 129^{58}, 135^{36}, 141^{25}, 147^{13}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>9</sup>, 111<sup>19</sup>, 117<sup>30</sup>, 123<sup>56</sup>, 129<sup>58</sup>, 135<sup>36</sup>, 141<sup>25</sup>, 147<sup>13</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>296</td>
 
<td>296</td>
<td><math>\{ 87, 93, 99^{3}, 105^{6}, 111^{14}, 117^{38}, 123^{60}, 129^{52}, 135^{39}, 141^{25}, 147^{9}, 153^{6}, 159, 256 \}</math></td>
+
<td> 87, 93, 99<sup>3</sup>, 105<sup>6</sup>, 111<sup>14</sup>, 117<sup>38</sup>, 123<sup>60</sup>, 129<sup>52</sup>, 135<sup>39</sup>, 141<sup>25</sup>, 147<sup>9</sup>, 153<sup>6</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>297</td>
 
<td>297</td>
<td><math>\{ 99^{3}, 105^{8}, 111^{23}, 117^{33}, 123^{48}, 129^{60}, 135^{40}, 141^{22}, 147^{13}, 153^{4}, 165, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>23</sup>, 117<sup>33</sup>, 123<sup>48</sup>, 129<sup>60</sup>, 135<sup>40</sup>, 141<sup>22</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>298</td>
 
<td>298</td>
<td><math>\{ 99^{4}, 105^{8}, 111^{19}, 117^{37}, 123^{50}, 129^{52}, 135^{44}, 141^{26}, 147^{10}, 153^{4}, 165, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>8</sup>, 111<sup>19</sup>, 117<sup>37</sup>, 123<sup>50</sup>, 129<sup>52</sup>, 135<sup>44</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>299</td>
 
<td>299</td>
<td><math>\{ 99^{4}, 105^{12}, 111^{13}, 117^{36}, 123^{50}, 129^{56}, 135^{48}, 141^{20}, 147^{10}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>12</sup>, 111<sup>13</sup>, 117<sup>36</sup>, 123<sup>50</sup>, 129<sup>56</sup>, 135<sup>48</sup>, 141<sup>20</sup>, 147<sup>10</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>300</td>
 
<td>300</td>
<td><math>\{ 93, 99^{2}, 105^{6}, 111^{17}, 117^{48}, 123^{50}, 129^{46}, 135^{44}, 141^{23}, 147^{12}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99<sup>2</sup>, 105<sup>6</sup>, 111<sup>17</sup>, 117<sup>48</sup>, 123<sup>50</sup>, 129<sup>46</sup>, 135<sup>44</sup>, 141<sup>23</sup>, 147<sup>12</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>301</td>
 
<td>301</td>
<td><math>\{ 93, 99, 105^{9}, 111^{25}, 117^{26}, 123^{52}, 129^{66}, 135^{36}, 141^{21}, 147^{11}, 153^{5}, 159^{2}, 256 \}</math></td>
+
<td> 93, 99, 105<sup>9</sup>, 111<sup>25</sup>, 117<sup>26</sup>, 123<sup>52</sup>, 129<sup>66</sup>, 135<sup>36</sup>, 141<sup>21</sup>, 147<sup>11</sup>, 153<sup>5</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>302</td>
 
<td>302</td>
<td><math>\{ 93, 99^{3}, 105^{7}, 111^{23}, 117^{32}, 123^{48}, 129^{60}, 135^{40}, 141^{23}, 147^{13}, 153^{5}, 256 \}</math></td>
+
<td> 93, 99<sup>3</sup>, 105<sup>7</sup>, 111<sup>23</sup>, 117<sup>32</sup>, 123<sup>48</sup>, 129<sup>60</sup>, 135<sup>40</sup>, 141<sup>23</sup>, 147<sup>13</sup>, 153<sup>5</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>303</td>
 
<td>303</td>
<td><math>\{ 99^{2}, 105^{10}, 111^{25}, 117^{30}, 123^{48}, 129^{58}, 135^{38}, 141^{26}, 147^{14}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>2</sup>, 105<sup>10</sup>, 111<sup>25</sup>, 117<sup>30</sup>, 123<sup>48</sup>, 129<sup>58</sup>, 135<sup>38</sup>, 141<sup>26</sup>, 147<sup>14</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>304</td>
 
<td>304</td>
<td><math>\{ 87, 99, 105^{12}, 111^{19}, 117^{34}, 123^{46}, 129^{58}, 135^{43}, 141^{22}, 147^{17}, 153^{2}, 256 \}</math></td>
+
<td> 87, 99, 105<sup>12</sup>, 111<sup>19</sup>, 117<sup>34</sup>, 123<sup>46</sup>, 129<sup>58</sup>, 135<sup>43</sup>, 141<sup>22</sup>, 147<sup>17</sup>, 153<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>305</td>
 
<td>305</td>
<td><math>\{ 99^{6}, 105^{3}, 111^{20}, 117^{46}, 123^{42}, 129^{48}, 135^{50}, 141^{26}, 147^{8}, 153^{5}, 159, 256 \}</math></td>
+
<td> 99<sup>6</sup>, 105<sup>3</sup>, 111<sup>20</sup>, 117<sup>46</sup>, 123<sup>42</sup>, 129<sup>48</sup>, 135<sup>50</sup>, 141<sup>26</sup>, 147<sup>8</sup>, 153<sup>5</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>306</td>
 
<td>306</td>
<td><math>\{ 99, 105^{10}, 111^{23}, 117^{34}, 123^{54}, 129^{50}, 135^{38}, 141^{30}, 147^{9}, 153^{4}, 159^{2}, 256 \}</math></td>
+
<td> 99, 105<sup>10</sup>, 111<sup>23</sup>, 117<sup>34</sup>, 123<sup>54</sup>, 129<sup>50</sup>, 135<sup>38</sup>, 141<sup>30</sup>, 147<sup>9</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>307</td>
 
<td>307</td>
<td><math>\{ 99^{4}, 105^{8}, 111^{21}, 117^{33}, 123^{48}, 129^{60}, 135^{42}, 141^{22}, 147^{12}, 153^{4}, 165, 256 \}</math></td>
+
<td> 99<sup>4</sup>, 105<sup>8</sup>, 111<sup>21</sup>, 117<sup>33</sup>, 123<sup>48</sup>, 129<sup>60</sup>, 135<sup>42</sup>, 141<sup>22</sup>, 147<sup>12</sup>, 153<sup>4</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>308</td>
 
<td>308</td>
<td><math>\{ 99^{5}, 105^{8}, 111^{18}, 117^{38}, 123^{50}, 129^{46}, 135^{44}, 141^{34}, 147^{9}, 153^{2}, 159, 256 \}</math></td>
+
<td> 99<sup>5</sup>, 105<sup>8</sup>, 111<sup>18</sup>, 117<sup>38</sup>, 123<sup>50</sup>, 129<sup>46</sup>, 135<sup>44</sup>, 141<sup>34</sup>, 147<sup>9</sup>, 153<sup>2</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>309</td>
 
<td>309</td>
<td><math>\{ 93^{2}, 99^{6}, 105^{7}, 111^{14}, 117^{28}, 123^{56}, 129^{62}, 135^{40}, 141^{26}, 147^{10}, 153^{3}, 159, 256 \}</math></td>
+
<td> 93<sup>2</sup>, 99<sup>6</sup>, 105<sup>7</sup>, 111<sup>14</sup>, 117<sup>28</sup>, 123<sup>56</sup>, 129<sup>62</sup>, 135<sup>40</sup>, 141<sup>26</sup>, 147<sup>10</sup>, 153<sup>3</sup>, 159, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>310</td>
 
<td>310</td>
<td><math>\{ 99^{3}, 105^{8}, 111^{13}, 117^{45}, 123^{56}, 129^{52}, 135^{40}, 141^{18}, 147^{13}, 153^{4}, 159^{2}, 165, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>8</sup>, 111<sup>13</sup>, 117<sup>45</sup>, 123<sup>56</sup>, 129<sup>52</sup>, 135<sup>40</sup>, 141<sup>18</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 159<sup>2</sup>, 165, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>311</td>
 
<td>311</td>
<td><math>\{ 99^{3}, 105^{12}, 111^{19}, 117^{28}, 123^{56}, 129^{56}, 135^{36}, 141^{28}, 147^{13}, 153^{4}, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>12</sup>, 111<sup>19</sup>, 117<sup>28</sup>, 123<sup>56</sup>, 129<sup>56</sup>, 135<sup>36</sup>, 141<sup>28</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 256 </td>
 
</tr>
 
</tr>
  
 
<tr>
 
<tr>
 
<td>312</td>
 
<td>312</td>
<td><math>\{ 99^{3}, 105^{12}, 111^{12}, 117^{40}, 123^{56}, 129^{48}, 135^{42}, 141^{24}, 147^{13}, 153^{4}, 159, 256 \}</math></td>
+
<td> 99<sup>3</sup>, 105<sup>12</sup>, 111<sup>12</sup>, 117<sup>40</sup>, 123<sup>56</sup>, 129<sup>48</sup>, 135<sup>42</sup>, 141<sup>24</sup>, 147<sup>13</sup>, 153<sup>4</sup>, 159, 256 </td>
 
</tr>
 
</tr>