Known infinite families of quadratic APN polynomials over GF(2^n)

From Boolean
Revision as of 13:29, 11 January 2019 by Fady (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
[math]\displaystyle{ N^\circ }[/math] Functions Conditions References
C1-C2 [math]\displaystyle{ x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}} }[/math] [math]\displaystyle{ n = pk, \gcd(k,3) = \gcd(s,3k) = 1, p \in \{3,4\}, i = sk\bmod p, m = p -i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [1]
C3 [math]\displaystyle{ sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}+cx^{2^iq+1}+c^qx^{2^i+q} }[/math] [math]\displaystyle{ q=2^m, n=2m, }[/math] [math]\displaystyle{ gcd(i,m)=1 }[/math], [math]\displaystyle{ c\in \mathbb{F}_{2^n}, s \in \mathbb F_{2^n} \setminus \mathbb{F}_{q}, X^{2^i+1}+cX^{2^i}+c^{q}X+1 \text{ has no solution } x }[/math] s.t. [math]\displaystyle{ x^{q+1}=1 }[/math] [2]
C4 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n (a^3x^9) }[/math] [math]\displaystyle{ a\neq 0 }[/math] [3]
C5 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n^3 (a^3x^9+a^6x^{18}) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ a\ne0 }[/math] [4]
C6 [math]\displaystyle{ x^3+a^{-1} \mathrm{Tr}_n^3(a^6x^{18}+a^{12}x^{36}) }[/math] [math]\displaystyle{ 3|n, a \ne 0 }[/math] [4]
C7-C9 [math]\displaystyle{ ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}} }[/math] [math]\displaystyle{ n=3k, \gcd(k,3)=\gcd(s,3k)=1, v, w\in\mathbb{F}_{2^k}, vw \ne 1, 3|(k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [5]
C10 [math]\displaystyle{ (x+x^{2{^m}})^{2^k+1}+u'(ux+u^{2^{m}} x^{2^{m}})^{(2^k+1)2^i}+u(x+x^{2^{m}})(ux+u^{2^{m}} x^{2^{m}}) }[/math] [math]\displaystyle{ n=2m, m\geqslant 2 }[/math] even, [math]\displaystyle{ \gcd(k, m)=1, }[/math], [math]\displaystyle{ i \geqslant 2 }[/math] even, [math]\displaystyle{ u\text{ primitive in } \mathbb{F}_{2^n}^*, u' \in \mathbb{F}_{2^m} \text{ not a cube } }[/math] [6]
C11 [math]\displaystyle{ a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3 }[/math] [math]\displaystyle{ n=3m, m \ \text{odd}, L(x)=ax^{2^{m}}+bx^{2^{m}}+cx }[/math] satisfies the conditions in lemma 8 of [7] [7]
  1. Budaghyan, L., Carlet, C. and Leander, G., 2008. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory, 54(9), pp.4218-4229.
  2. Budaghyan, L. and Carlet, C., 2008. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory, 54(5), pp.2354-2357.
  3. Budaghyan, L., Carlet, C. and Leander, G., 2009. Constructing new APN functions from known ones. Finite Fields and Their Applications, 15(2), pp.150-159.
  4. 4.0 4.1 Budaghyan, L., Carlet, C. and Leander, G., 2009, October. On a construction of quadratic APN functions. In Information Theory Workshop, 2009. ITW 2009. IEEE (pp. 374-378). IEEE.
  5. Bracken, C., Byrne, E., Markin, N., & Mcguire, G. (2011). A few more quadratic APN functions. Cryptography and Communications, 3(1), 43-53.
  6. Göloğlu, F., 2015. Almost perfect nonlinear trinomials and hexanomials. Finite Fields and Their Applications, 33, pp.258-282.
  7. Villa, I., Budaghyan, L., Calderini, M., Carlet, C., & Coulter, R. On Isotopic Construction of APN Functions. SETA 2018