Known infinite families of quadratic APN polynomials over GF(2^n)

From Boolean Functions
Revision as of 11:38, 18 January 2019 by Fady (talk | contribs)
Jump to: navigation, search
Functions Conditions References
C1-C2 [1]
C3 , s.t. [2]
C4 [3]
C5 , [4]
C6 [4]
C7-C9 [5]
C10 even, and even, [6]
C11 satisfies the conditions in Lemma 8 of [7] [7]
  1. Budaghyan, L., Carlet, C. and Leander, G., 2008. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory, 54(9), pp.4218-4229.
  2. Budaghyan, L. and Carlet, C., 2008. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory, 54(5), pp.2354-2357.
  3. Budaghyan, L., Carlet, C. and Leander, G., 2009. Constructing new APN functions from known ones. Finite Fields and Their Applications, 15(2), pp.150-159.
  4. 4.0 4.1 Budaghyan, L., Carlet, C. and Leander, G., 2009, October. On a construction of quadratic APN functions. In Information Theory Workshop, 2009. ITW 2009. IEEE (pp. 374-378). IEEE.
  5. Bracken, C., Byrne, E., Markin, N., & Mcguire, G. (2011). A few more quadratic APN functions. Cryptography and Communications, 3(1), 43-53.
  6. Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
  7. Villa, I., Budaghyan, L., Calderini, M., Carlet, C., & Coulter, R. On Isotopic Construction of APN Functions. SETA 2018