Known infinite families of quadratic APN polynomials over GF(2^n)

From Boolean
Revision as of 12:48, 23 June 2020 by Nikolay (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
[math]\displaystyle{ N^\circ }[/math] Functions Conditions References
C1-C2 [math]\displaystyle{ x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}} }[/math] [math]\displaystyle{ n = pk, \gcd(k,3) = \gcd(s,3k) = 1, p \in \{3,4\} }[/math], [math]\displaystyle{ i = sk\bmod p, m = p -i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [1]
C3 [math]\displaystyle{ sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}+cx^{2^iq+1}+c^qx^{2^i+q} }[/math] [math]\displaystyle{ q=2^m, n=2m, gcd(i,m)=1, c\in \mathbb{F}_{2^n}, s \in \mathbb F_{2^n} \setminus \mathbb{F}_{q} }[/math], [math]\displaystyle{ X^{2^i+1}+cX^{2^i}+c^{q}X+1 \text{ has no solution } x \text{ s.t. }x^{q+1}=1 }[/math] [2]
C4 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n (a^3x^9) }[/math] [math]\displaystyle{ a\neq 0 }[/math] [3]
C5 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n^3 (a^3x^9+a^6x^{18}) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ a\ne0 }[/math] [4]
C6 [math]\displaystyle{ x^3+a^{-1} \mathrm{Tr}_n^3(a^6x^{18}+a^{12}x^{36}) }[/math] [math]\displaystyle{ 3|n, a \ne 0 }[/math] [4]
C7-C9 [math]\displaystyle{ ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}} }[/math] [math]\displaystyle{ n=3k, \gcd(k,3)=\gcd(s,3k)=1, v, w\in\mathbb{F}_{2^k} }[/math], [math]\displaystyle{ vw \ne 1, 3|(k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [5]
C10 [math]\displaystyle{ (x+x^{2{^m}})^{2^k+1}+u'(ux+u^{2^{m}} x^{2^{m}})^{(2^k+1)2^i}+u(x+x^{2^{m}})(ux+u^{2^{m}} x^{2^{m}}) }[/math] [math]\displaystyle{ n=2m, m\geqslant 2 }[/math] even, [math]\displaystyle{ \gcd(k, m)=1 }[/math] and [math]\displaystyle{ i \geqslant 2 }[/math] even, [math]\displaystyle{ u\text{ primitive in } \mathbb{F}_{2^n}^*, u' \in \mathbb{F}_{2^m} \text{ not a cube } }[/math] [6]
C11 [math]\displaystyle{ L(x)^{2^i}x+L(x)x^{2^i} }[/math] [math]\displaystyle{ n=km, m\gt 1, \gcd(n,i)=1, L(x)=\sum_{j=0}^{k-1}a_jx^{2^{jm}} }[/math] satisfies the conditions in Theorem 3.6 of [7] [7]
C12 [math]\displaystyle{ ut(x)(x^q+x)+t(x)^{2^{2i}+2^{3i}}+at(x)^{2^{2i}}(x^q+x)^{2^i}+b(x^q+x)^{2^i+1} }[/math] [math]\displaystyle{ n=2m, q=2^m, \gcd(m,i)=1, t(x)=u^qx+x^qu }[/math], [math]\displaystyle{ X^{2^i+1}+aX+b \mbox{ has no solution over }\mathbb{F}_{2^m} }[/math] [8]
C13 [math]\displaystyle{ x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k} }[/math] [math]\displaystyle{ n = 2m = 10, (a,b,c) = (\beta,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2} }[/math] [9]
[math]\displaystyle{ n = 2m, m\ odd, 3 \nmid m, (a,b,c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2} }[/math], [math]\displaystyle{ i \in \{ m-2, m, 2m-1, (m-2)^{-1} \mod n \} }[/math]
  1. Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
  2. Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
  3. Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
  4. 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
  5. Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
  6. Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
  7. Budaghyan L, Calderini M, Carlet C, Coulter R, Villa I. Constructing APN functions through isotopic shift. Cryptology ePrint Archive, Report 2018/769
  8. Taniguchi H. On some quadratic APN functions. Des. Codes Cryptogr. 2019, https://doi.org/10.1007/s10623-018-00598-2
  9. Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994