Known infinite families of quadratic APN polynomials over GF(2^n)
From Boolean Functions
Revision as of 16:20, 9 January 2020 by
Ivi062
(
talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to:
navigation
,
search
N
∘
{\displaystyle N^{\circ }}
Functions
Conditions
References
C1-C2
x
2
s
+
1
+
u
2
k
−
1
x
2
i
k
+
2
m
k
+
s
{\displaystyle x^{2^{s}+1}+u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}}
n
=
p
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
p
∈
{
3
,
4
}
{\displaystyle n=pk,\gcd(k,3)=\gcd(s,3k)=1,p\in \{3,4\}}
,
i
=
s
k
mod
p
,
m
=
p
−
i
,
n
≥
12
,
u
primitive in
F
2
n
∗
{\displaystyle i=sk{\bmod {p}},m=p-i,n\geq 12,u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[1]
C3
s
x
q
+
1
+
x
2
i
+
1
+
x
q
(
2
i
+
1
)
+
c
x
2
i
q
+
1
+
c
q
x
2
i
+
q
{\displaystyle sx^{q+1}+x^{2^{i}+1}+x^{q(2^{i}+1)}+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}}
q
=
2
m
,
n
=
2
m
,
g
c
d
(
i
,
m
)
=
1
,
c
∈
F
2
n
,
s
∈
F
2
n
∖
F
q
{\displaystyle q=2^{m},n=2m,gcd(i,m)=1,c\in \mathbb {F} _{2^{n}},s\in \mathbb {F} _{2^{n}}\setminus \mathbb {F} _{q}}
,
X
2
i
+
1
+
c
X
2
i
+
c
q
X
+
1
has no solution
x
s.t.
x
q
+
1
=
1
{\displaystyle X^{2^{i}+1}+cX^{2^{i}}+c^{q}X+1{\text{ has no solution }}x{\text{ s.t. }}x^{q+1}=1}
[2]
C4
x
3
+
a
−
1
T
r
n
(
a
3
x
9
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}(a^{3}x^{9})}
a
≠
0
{\displaystyle a\neq 0}
[3]
C5
x
3
+
a
−
1
T
r
n
3
(
a
3
x
9
+
a
6
x
18
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{3}x^{9}+a^{6}x^{18})}
3
|
n
{\displaystyle 3|n}
,
a
≠
0
{\displaystyle a\neq 0}
[4]
C6
x
3
+
a
−
1
T
r
n
3
(
a
6
x
18
+
a
12
x
36
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{6}x^{18}+a^{12}x^{36})}
3
|
n
,
a
≠
0
{\displaystyle 3|n,a\neq 0}
[4]
C7-C9
u
x
2
s
+
1
+
u
2
k
x
2
−
k
+
2
k
+
s
+
v
x
2
−
k
+
1
+
w
u
2
k
+
1
x
2
s
+
2
k
+
s
{\displaystyle ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^{k}+1}x^{2^{s}+2^{k+s}}}
n
=
3
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
v
,
w
∈
F
2
k
{\displaystyle n=3k,\gcd(k,3)=\gcd(s,3k)=1,v,w\in \mathbb {F} _{2^{k}}}
,
v
w
≠
1
,
3
|
(
k
+
s
)
,
u
primitive in
F
2
n
∗
{\displaystyle vw\neq 1,3|(k+s),u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[5]
C10
(
x
+
x
2
m
)
2
k
+
1
+
u
′
(
u
x
+
u
2
m
x
2
m
)
(
2
k
+
1
)
2
i
+
u
(
x
+
x
2
m
)
(
u
x
+
u
2
m
x
2
m
)
{\displaystyle (x+x^{2{^{m}}})^{2^{k}+1}+u'(ux+u^{2^{m}}x^{2^{m}})^{(2^{k}+1)2^{i}}+u(x+x^{2^{m}})(ux+u^{2^{m}}x^{2^{m}})}
n
=
2
m
,
m
⩾
2
{\displaystyle n=2m,m\geqslant 2}
even,
gcd
(
k
,
m
)
=
1
{\displaystyle \gcd(k,m)=1}
and
i
⩾
2
{\displaystyle i\geqslant 2}
even,
u
primitive in
F
2
n
∗
,
u
′
∈
F
2
m
not a cube
{\displaystyle u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*},u'\in \mathbb {F} _{2^{m}}{\text{ not a cube }}}
[6]
C11
L
(
x
)
2
i
x
+
L
(
x
)
x
2
i
{\displaystyle L(x)^{2^{i}}x+L(x)x^{2^{i}}}
n
=
k
m
,
m
>
1
,
gcd
(
n
,
i
)
=
1
,
L
(
x
)
=
∑
j
=
0
k
−
1
a
j
x
2
j
m
{\displaystyle n=km,m>1,\gcd(n,i)=1,L(x)=\sum _{j=0}^{k-1}a_{j}x^{2^{jm}}}
satisfies the conditions in Theorem 3.6 of [7]
[7]
C12
u
t
(
x
)
(
x
q
+
x
)
+
t
(
x
)
2
2
i
+
2
3
i
+
a
t
(
x
)
2
2
i
(
x
q
+
x
)
2
i
+
b
(
x
q
+
x
)
2
i
+
1
{\displaystyle ut(x)(x^{q}+x)+t(x)^{2^{2i}+2^{3i}}+at(x)^{2^{2i}}(x^{q}+x)^{2^{i}}+b(x^{q}+x)^{2^{i}+1}}
n
=
2
m
,
q
=
2
m
,
gcd
(
m
,
i
)
=
1
,
t
(
x
)
=
u
q
x
+
x
q
u
{\displaystyle n=2m,q=2^{m},\gcd(m,i)=1,t(x)=u^{q}x+x^{q}u}
,
X
2
i
+
1
+
a
X
+
b
has no solution over
F
2
m
{\displaystyle X^{2^{i}+1}+aX+b{\mbox{ has no solution over }}\mathbb {F} _{2^{m}}}
[8]
C13
x
3
+
a
(
x
2
i
+
1
)
2
k
+
b
x
3
⋅
2
m
+
c
(
x
2
i
+
m
+
2
m
)
2
k
{\displaystyle x^{3}+a(x^{2^{i}+1})^{2^{k}}+bx^{3\cdot 2^{m}}+c(x^{2^{i+m}+2^{m}})^{2^{k}}}
n
=
2
m
=
10
,
(
a
,
b
,
c
)
=
(
β
,
1
,
0
,
0
)
,
i
=
3
,
k
=
2
,
β
primitive in
F
2
2
{\displaystyle n=2m=10,(a,b,c)=(\beta ,1,0,0),i=3,k=2,\beta {\text{ primitive in }}\mathbb {F} _{2^{2}}}
[9]
n
=
2
m
,
m
o
d
d
,
3
∤
m
,
(
a
,
b
,
c
)
=
(
β
,
β
2
,
1
)
,
β
primitive in
F
2
2
{\displaystyle n=2m,m\ odd,3\nmid m,(a,b,c)=(\beta ,\beta ^{2},1),\beta {\text{ primitive in }}\mathbb {F} _{2^{2}}}
,
i
∈
{
m
−
2
,
m
,
2
m
−
1
,
(
m
−
2
)
−
1
mod
n
}
{\displaystyle i\in \{m-2,m,2m-1,(m-2)^{-1}\mod n\}}
↑
Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
↑
Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
↑
Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
↑
4.0
4.1
Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
↑
Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
↑
Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
↑
Villa I, Budaghyan L, Calderini M, Carlet C, Coulter R. Constructing APN functions through isotopic shift. Cryptology ePrint Archive, Report 2018/769
↑
Taniguchi H. On some quadratic APN functions. Des. Codes Cryptogr. 2019,
https://doi.org/10.1007/s10623-018-00598-2
↑
Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Tables
Recent changes
Random page
Help
Tools
What links here
Related changes
Special pages
Permanent link
Page information