Difference between revisions of "Known infinite families of quadratic APN polynomials over GF(2^n)"

From Boolean Functions
Jump to: navigation, search
Line 63: Line 63:
 
<td><math>a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3</math></td>
 
<td><math>a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3</math></td>
 
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
 
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
+
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
 
</tr>
 
</tr>
  
Line 70: Line 70:
 
<td rowspan="2"><math>x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}</math></td>
 
<td rowspan="2"><math>x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}</math></td>
 
<td><math>n = 2m = 10, (a,b,c) = (\beta,1,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2}</math></td>
 
<td><math>n = 2m = 10, (a,b,c) = (\beta,1,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2}</math></td>
<td rowspan="2"><ref>Budaghyan L, Helleseth T, & Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994</ref></td>
+
<td rowspan="2"><ref>Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994</ref></td>
 
</tr>
 
</tr>
  

Revision as of 11:21, 11 September 2019

Functions Conditions References
C1-C2 [1]
C3 , s.t. [2]
C4 [3]
C5 , [4]
C6 [4]
C7-C9 [5]
C10 even, and even, [6]
C11 satisfies the conditions in Lemma 8 of [7] [7]
C12 [8]
  1. Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
  2. Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
  3. Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
  4. 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
  5. Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
  6. Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
  7. Villa I, Budaghyan L, Calderini M, Carlet C, Coulter R. On Isotopic Construction of APN Functions. SETA 2018
  8. Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994