Difference between revisions of "Known infinite families of quadratic APN polynomials over GF(2^n)"
Line 64: | Line 64: | ||
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td> | <td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td> | ||
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td> | <td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td rowspan="2">C12</td> | ||
+ | <td rowspan="2"><math>x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}</math></td> | ||
+ | <td><math>n = 2m = 10, (a,b,c) = (\beta,1,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2}</math></td> | ||
+ | <td rowspan="2"><ref>Budaghyan L, Helleseth T, & Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994</ref></td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td><math>n = 2m, m odd, 3 \nmid m, (a,b,c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2}, i \in \{ m-2, m, 2m-1, (m-2)^{-1} \mod n \}</math></td> | ||
</tr> | </tr> | ||
</table> | </table> |
Revision as of 12:20, 11 September 2019
Functions | Conditions | References | |
---|---|---|---|
C1-C2 | [1] | ||
C3 | , s.t. | [2] | |
C4 | [3] | ||
C5 | , | [4] | |
C6 | [4] | ||
C7-C9 | [5] | ||
C10 | even, and even, | [6] | |
C11 | satisfies the conditions in Lemma 8 of [7] | [7] | |
C12 | [8] | ||
- ↑ Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
- ↑ Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
- ↑ Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
- ↑ 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
- ↑ Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
- ↑ Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
- ↑ Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018
- ↑ Budaghyan L, Helleseth T, & Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994