Difference between revisions of "Known infinite families of quadratic APN polynomials over GF(2^n)"
Line 76: | Line 76: | ||
<td rowspan="2">C13</td> | <td rowspan="2">C13</td> | ||
<td rowspan="2"><math>x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}</math></td> | <td rowspan="2"><math>x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}</math></td> | ||
− | <td><math>n = 2m = 10, (a,b,c) = (\beta | + | <td><math>n = 2m = 10, (a,b,c) = (\beta,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2}</math></td> |
<td rowspan="2"><ref>Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994</ref></td> | <td rowspan="2"><ref>Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994</ref></td> | ||
</tr> | </tr> |
Revision as of 14:48, 23 June 2020
Functions | Conditions | References | |
---|---|---|---|
C1-C2 | , | [1] | |
C3 | , | [2] | |
C4 | [3] | ||
C5 | , | [4] | |
C6 | [4] | ||
C7-C9 | , | [5] | |
C10 | even, and even, | [6] | |
C11 | satisfies the conditions in Theorem 3.6 of [7] | [7] | |
C12 | , | [8] | |
C13 | [9] | ||
, |
- ↑ Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
- ↑ Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
- ↑ Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
- ↑ 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
- ↑ Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
- ↑ Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
- ↑ Budaghyan L, Calderini M, Carlet C, Coulter R, Villa I. Constructing APN functions through isotopic shift. Cryptology ePrint Archive, Report 2018/769
- ↑ Taniguchi H. On some quadratic APN functions. Des. Codes Cryptogr. 2019, https://doi.org/10.1007/s10623-018-00598-2
- ↑ Budaghyan L, Helleseth T, Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994