Known infinite families of quadratic APN polynomials over GF(2^n): Difference between revisions

From Boolean
Jump to navigation Jump to search
No edit summary
No edit summary
Line 64: Line 64:
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
</tr>
<tr>
<td rowspan="2">C12</td>
<td rowspan="2"><math>x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k}</math></td>
<td><math>n = 2m = 10, (a,b,c) = (\beta,1,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2}</math></td>
<td rowspan="2"><ref>Budaghyan L, Helleseth T, & Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994</ref></td>
</tr>
<tr>
<td><math>n = 2m, m odd, 3 \nmid m, (a,b,c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2}, i \in \{ m-2, m, 2m-1, (m-2)^{-1} \mod n \}</math></td>
</tr>
</tr>




</table>
</table>

Revision as of 10:20, 11 September 2019

[math]\displaystyle{ N^\circ }[/math] Functions Conditions References
C1-C2 [math]\displaystyle{ x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}} }[/math] [math]\displaystyle{ n = pk, \gcd(k,3) = \gcd(s,3k) = 1, p \in \{3,4\}, i = sk\bmod p, m = p -i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [1]
C3 [math]\displaystyle{ sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}+cx^{2^iq+1}+c^qx^{2^i+q} }[/math] [math]\displaystyle{ q=2^m, n=2m, }[/math] [math]\displaystyle{ gcd(i,m)=1 }[/math], [math]\displaystyle{ c\in \mathbb{F}_{2^n}, s \in \mathbb F_{2^n} \setminus \mathbb{F}_{q}, X^{2^i+1}+cX^{2^i}+c^{q}X+1 \text{ has no solution } x }[/math] s.t. [math]\displaystyle{ x^{q+1}=1 }[/math] [2]
C4 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n (a^3x^9) }[/math] [math]\displaystyle{ a\neq 0 }[/math] [3]
C5 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n^3 (a^3x^9+a^6x^{18}) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ a\ne0 }[/math] [4]
C6 [math]\displaystyle{ x^3+a^{-1} \mathrm{Tr}_n^3(a^6x^{18}+a^{12}x^{36}) }[/math] [math]\displaystyle{ 3|n, a \ne 0 }[/math] [4]
C7-C9 [math]\displaystyle{ ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}} }[/math] [math]\displaystyle{ n=3k, \gcd(k,3)=\gcd(s,3k)=1, v, w\in\mathbb{F}_{2^k}, vw \ne 1, 3|(k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [5]
C10 [math]\displaystyle{ (x+x^{2{^m}})^{2^k+1}+u'(ux+u^{2^{m}} x^{2^{m}})^{(2^k+1)2^i}+u(x+x^{2^{m}})(ux+u^{2^{m}} x^{2^{m}}) }[/math] [math]\displaystyle{ n=2m, m\geqslant 2 }[/math] even, [math]\displaystyle{ \gcd(k, m)=1 }[/math] and [math]\displaystyle{ i \geqslant 2 }[/math] even, [math]\displaystyle{ u\text{ primitive in } \mathbb{F}_{2^n}^*, u' \in \mathbb{F}_{2^m} \text{ not a cube } }[/math] [6]
C11 [math]\displaystyle{ a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3 }[/math] [math]\displaystyle{ n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx }[/math] satisfies the conditions in Lemma 8 of [7] [7]
C12 [math]\displaystyle{ x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k} }[/math] [math]\displaystyle{ n = 2m = 10, (a,b,c) = (\beta,1,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2} }[/math] [8]
[math]\displaystyle{ n = 2m, m odd, 3 \nmid m, (a,b,c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2}, i \in \{ m-2, m, 2m-1, (m-2)^{-1} \mod n \} }[/math]
  1. Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
  2. Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
  3. Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
  4. 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
  5. Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
  6. Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
  7. Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018
  8. Budaghyan L, Helleseth T, & Kaleyski N. A new family of APN quadrinomials. Cryptology ePrint Archive, Report 2019/994