Difference between revisions of "Known infinite families of quadratic APN polynomials over GF(2^n)"
m |
|||
Line 62: | Line 62: | ||
<td>C11</td> | <td>C11</td> | ||
<td><math>L(x)^{2^i}x+L(x)x^{2^i}</math></td> | <td><math>L(x)^{2^i}x+L(x)x^{2^i}</math></td> | ||
− | <td><math>n=km, m>1, \gcd(n,i)=1, L(x)=\sum_{j=0}^{k-1}a_jx^{2^{jm}}</math> satisfies the conditions in Theorem 3 | + | <td><math>n=km, m>1, \gcd(n,i)=1, L(x)=\sum_{j=0}^{k-1}a_jx^{2^{jm}}</math> satisfies the conditions in Theorem 6.3 of [7]</td> |
<td><ref>L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, I. Villa. Constructing APN Functions through Isotopic Shifts. IEEE Trans. Inform. Theory, early access article. https://doi.org/10.1109/TIT.2020.2974471</ref></td> | <td><ref>L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, I. Villa. Constructing APN Functions through Isotopic Shifts. IEEE Trans. Inform. Theory, early access article. https://doi.org/10.1109/TIT.2020.2974471</ref></td> | ||
</tr> | </tr> |
Latest revision as of 14:34, 24 August 2020
Functions | Conditions | References | |
---|---|---|---|
C1-C2 | , | [1] | |
C3 | , | [2] | |
C4 | [3] | ||
C5 | , | [4] | |
C6 | [4] | ||
C7-C9 | , | [5] | |
C10 | even, and even, | [6] | |
C11 | satisfies the conditions in Theorem 6.3 of [7] | [7] | |
C12 | , | [8] | |
C13 | [9] | ||
, |
- ↑ L. Budaghyan, C. Carlet, G. Leander. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory, 54(9), pp. 4218-4229, 2008. https://doi.org/10.1109/TIT.2008.928275
- ↑ L. Budaghyan and C. Carlet. Classes of Quadratic APN Trinomials and Hexanomials and Related Structures. IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 2354-2357, May 2008. https://doi.org/10.1109/TIT.2008.920246
- ↑ L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150-159, April 2009. https://doi.org/10.1016/j.ffa.2008.10.001
- ↑ 4.0 4.1 L. Budaghyan, C. Carlet, G. Leander. On a construction of quadratic APN functions. Proceedings of IEEE Information Theory Workshop, ITW’09, pp. 374-378, Taormina, Sicily, Oct. 2009. https://doi.org/10.1109/ITW.2009.5351383
- ↑ C. Bracken, E. Byrne, N. Markin, G. McGuire. A few more quadratic APN functions. Cryptography and Communications 3, pp. 45-53, 2008. https://doi.org/10.1007/s12095-010-0038-7
- ↑ Y. Zhou, A. Pott. A new family of semifields with 2 parameters. Advances in Mathematics, v. 234, pp. 43-60, 2013. https://doi.org/10.1016/j.aim.2012.10.014
- ↑ L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, I. Villa. Constructing APN Functions through Isotopic Shifts. IEEE Trans. Inform. Theory, early access article. https://doi.org/10.1109/TIT.2020.2974471
- ↑ H. Taniguchi. On some quadratic APN functions. Designs, Codes and Cryptography 87, pp. 1973-1983, 2019. https://doi.org/10.1007/s10623-018-00598-2
- ↑ L. Budaghyan, T. Helleseth, N. Kaleyski. A new family of APN quadrinomials. IEEE Trans. Inf. Theory, early access article. https://doi.org/10.1109/TIT.2020.3007513