Difference between revisions of "Known infinite families of quadratic APN polynomials over GF(2^n)"

From Boolean Functions
Jump to: navigation, search
Line 11: Line 11:
 
<td><math>x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}}</math></td>
 
<td><math>x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}}</math></td>
 
<td><math>n = pk, \gcd(k,3) = \gcd(s,3k) = 1, p \in \{3,4\}, i = sk\bmod p, m = p -i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^*</math></td>
 
<td><math>n = pk, \gcd(k,3) = \gcd(s,3k) = 1, p \in \{3,4\}, i = sk\bmod p, m = p -i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^*</math></td>
<td><ref>Budaghyan, L., Carlet, C. and Leander, G., 2008. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory, 54(9), pp.4218-4229.</ref></td>
+
<td><ref>Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.</ref></td>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 19: Line 19:
 
<td><math>sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}+cx^{2^iq+1}+c^qx^{2^i+q}</math></td>
 
<td><math>sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}+cx^{2^iq+1}+c^qx^{2^i+q}</math></td>
 
<td><math>q=2^m, n=2m,</math>  <math>gcd(i,m)=1</math>, <math>c\in \mathbb{F}_{2^n}, s \in \mathbb F_{2^n} \setminus \mathbb{F}_{q}, X^{2^i+1}+cX^{2^i}+c^{q}X+1  \text{ has no solution } x</math> s.t. <math>x^{q+1}=1</math></td>
 
<td><math>q=2^m, n=2m,</math>  <math>gcd(i,m)=1</math>, <math>c\in \mathbb{F}_{2^n}, s \in \mathbb F_{2^n} \setminus \mathbb{F}_{q}, X^{2^i+1}+cX^{2^i}+c^{q}X+1  \text{ has no solution } x</math> s.t. <math>x^{q+1}=1</math></td>
<td><ref>Budaghyan, L. and Carlet, C., 2008. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory, 54(5), pp.2354-2357.</ref></td>
+
<td><ref>Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.</ref></td>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 27: Line 27:
 
<td><math>x^3+a^{-1} \mathrm {Tr}_n (a^3x^9)</math></td>
 
<td><math>x^3+a^{-1} \mathrm {Tr}_n (a^3x^9)</math></td>
 
<td><math>a\neq 0</math></td>
 
<td><math>a\neq 0</math></td>
<td><ref>Budaghyan, L., Carlet, C. and Leander, G., 2009. Constructing new APN functions from known ones. Finite Fields and Their Applications, 15(2), pp.150-159.</ref></td>
+
<td><ref>Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.</ref></td>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 35: Line 35:
 
<td><math>x^3+a^{-1} \mathrm {Tr}_n^3 (a^3x^9+a^6x^{18})</math></td>
 
<td><math>x^3+a^{-1} \mathrm {Tr}_n^3 (a^3x^9+a^6x^{18})</math></td>
 
<td><math>3|n </math>, <math>a\ne0</math></td>
 
<td><math>3|n </math>, <math>a\ne0</math></td>
<td><ref name="2_ref">Budaghyan, L., Carlet, C. and Leander, G., 2009, October. On a construction of quadratic APN functions. In Information Theory Workshop, 2009. ITW 2009. IEEE (pp. 374-378). IEEE.</ref></td>
+
<td><ref name="2_ref">Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.</ref></td>
 
</tr>
 
</tr>
  
Line 49: Line 49:
 
<td><math>ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}}</math></td>
 
<td><math>ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}}</math></td>
 
<td><math>n=3k, \gcd(k,3)=\gcd(s,3k)=1, v, w\in\mathbb{F}_{2^k}, vw \ne 1, 3|(k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* </math></td>
 
<td><math>n=3k, \gcd(k,3)=\gcd(s,3k)=1, v, w\in\mathbb{F}_{2^k}, vw \ne 1, 3|(k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* </math></td>
<td><ref>Bracken, C., Byrne, E., Markin, N., & Mcguire, G. (2011). ''A few more quadratic APN functions. Cryptography and Communications'', 3(1), 43-53.</ref></td>
+
<td><ref>Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.</ref></td>
 
</tr>
 
</tr>
  
Line 63: Line 63:
 
<td><math>a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3</math></td>
 
<td><math>a^2x^{2^{2m+1}+1}+b^2x^{2^{m+1}+1}+ax^{2^{2m}+2}+bx^{2^{m}+2}+(c^2+c)x^3</math></td>
 
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
 
<td><math>n=3m, m \ \text{odd}, L(x)=ax^{2^{2m}}+bx^{2^{m}}+cx</math> satisfies the conditions in Lemma 8 of [7]</td>
<td><ref>Villa, I., Budaghyan, L., Calderini, M., Carlet, C., & Coulter, R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
+
<td><ref>Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018</ref></td>
 
</tr>
 
</tr>
  
  
 
</table>
 
</table>

Revision as of 11:32, 11 February 2019

Functions Conditions References
C1-C2 [1]
C3 , s.t. [2]
C4 [3]
C5 , [4]
C6 [4]
C7-C9 [5]
C10 even, and even, [6]
C11 satisfies the conditions in Lemma 8 of [7] [7]
  1. Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.
  2. Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.
  3. Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.
  4. 4.0 4.1 Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. InInformation Theory Workshop, 2009. ITW 2009. IEEE 2009 Oct 11 (pp. 374-378). IEEE.
  5. Bracken C, Byrne E, Markin N, Mcguire G. A few more quadratic APN functions. Cryptography and Communications. 2011 Mar 1;3(1):43-53.
  6. Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.
  7. Villa I, Budaghyan L, Calderini M, Carlet C, & Coulter R. On Isotopic Construction of APN Functions. SETA 2018