Known infinite families of quadratic APN polynomials over GF(2^n)
From Boolean Functions
Jump to:
navigation
,
search
N
∘
{\displaystyle N^{\circ }}
Functions
Conditions
References
C1-C2
x
2
s
+
1
+
u
2
k
−
1
x
2
i
k
+
2
m
k
+
s
{\displaystyle x^{2^{s}+1}+u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}}
n
=
p
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
p
∈
{
3
,
4
}
{\displaystyle n=pk,\gcd(k,3)=\gcd(s,3k)=1,p\in \{3,4\}}
,
i
=
s
k
mod
p
,
m
=
p
−
i
,
n
≥
12
,
u
primitive in
F
2
n
∗
{\displaystyle i=sk{\bmod {p}},m=p-i,n\geq 12,u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[1]
C3
s
x
q
+
1
+
x
2
i
+
1
+
x
q
(
2
i
+
1
)
+
c
x
2
i
q
+
1
+
c
q
x
2
i
+
q
{\displaystyle sx^{q+1}+x^{2^{i}+1}+x^{q(2^{i}+1)}+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}}
q
=
2
m
,
n
=
2
m
,
g
c
d
(
i
,
m
)
=
1
,
c
∈
F
2
n
,
s
∈
F
2
n
∖
F
q
{\displaystyle q=2^{m},n=2m,gcd(i,m)=1,c\in \mathbb {F} _{2^{n}},s\in \mathbb {F} _{2^{n}}\setminus \mathbb {F} _{q}}
,
X
2
i
+
1
+
c
X
2
i
+
c
q
X
+
1
has no solution
x
s.t.
x
q
+
1
=
1
{\displaystyle X^{2^{i}+1}+cX^{2^{i}}+c^{q}X+1{\text{ has no solution }}x{\text{ s.t. }}x^{q+1}=1}
[2]
C4
x
3
+
a
−
1
T
r
n
(
a
3
x
9
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}(a^{3}x^{9})}
a
≠
0
{\displaystyle a\neq 0}
[3]
C5
x
3
+
a
−
1
T
r
n
3
(
a
3
x
9
+
a
6
x
18
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{3}x^{9}+a^{6}x^{18})}
3
|
n
{\displaystyle 3|n}
,
a
≠
0
{\displaystyle a\neq 0}
[4]
C6
x
3
+
a
−
1
T
r
n
3
(
a
6
x
18
+
a
12
x
36
)
{\displaystyle x^{3}+a^{-1}\mathrm {Tr} _{n}^{3}(a^{6}x^{18}+a^{12}x^{36})}
3
|
n
,
a
≠
0
{\displaystyle 3|n,a\neq 0}
[4]
C7-C9
u
x
2
s
+
1
+
u
2
k
x
2
−
k
+
2
k
+
s
+
v
x
2
−
k
+
1
+
w
u
2
k
+
1
x
2
s
+
2
k
+
s
{\displaystyle ux^{2^{s}+1}+u^{2^{k}}x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^{k}+1}x^{2^{s}+2^{k+s}}}
n
=
3
k
,
gcd
(
k
,
3
)
=
gcd
(
s
,
3
k
)
=
1
,
v
,
w
∈
F
2
k
{\displaystyle n=3k,\gcd(k,3)=\gcd(s,3k)=1,v,w\in \mathbb {F} _{2^{k}}}
,
v
w
≠
1
,
3
|
(
k
+
s
)
,
u
primitive in
F
2
n
∗
{\displaystyle vw\neq 1,3|(k+s),u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*}}
[5]
C10
(
x
+
x
2
m
)
2
k
+
1
+
u
′
(
u
x
+
u
2
m
x
2
m
)
(
2
k
+
1
)
2
i
+
u
(
x
+
x
2
m
)
(
u
x
+
u
2
m
x
2
m
)
{\displaystyle (x+x^{2{^{m}}})^{2^{k}+1}+u'(ux+u^{2^{m}}x^{2^{m}})^{(2^{k}+1)2^{i}}+u(x+x^{2^{m}})(ux+u^{2^{m}}x^{2^{m}})}
n
=
2
m
,
m
⩾
2
{\displaystyle n=2m,m\geqslant 2}
even,
gcd
(
k
,
m
)
=
1
{\displaystyle \gcd(k,m)=1}
and
i
⩾
2
{\displaystyle i\geqslant 2}
even,
u
primitive in
F
2
n
∗
,
u
′
∈
F
2
m
not a cube
{\displaystyle u{\text{ primitive in }}\mathbb {F} _{2^{n}}^{*},u'\in \mathbb {F} _{2^{m}}{\text{ not a cube }}}
[6]
C11
L
(
x
)
2
i
x
+
L
(
x
)
x
2
i
{\displaystyle L(x)^{2^{i}}x+L(x)x^{2^{i}}}
n
=
k
m
,
m
>
1
,
gcd
(
n
,
i
)
=
1
,
L
(
x
)
=
∑
j
=
0
k
−
1
a
j
x
2
j
m
{\displaystyle n=km,m>1,\gcd(n,i)=1,L(x)=\sum _{j=0}^{k-1}a_{j}x^{2^{jm}}}
satisfies the conditions in Theorem 6.3 of [7]
[7]
C12
u
t
(
x
)
(
x
q
+
x
)
+
t
(
x
)
2
2
i
+
2
3
i
+
a
t
(
x
)
2
2
i
(
x
q
+
x
)
2
i
+
b
(
x
q
+
x
)
2
i
+
1
{\displaystyle ut(x)(x^{q}+x)+t(x)^{2^{2i}+2^{3i}}+at(x)^{2^{2i}}(x^{q}+x)^{2^{i}}+b(x^{q}+x)^{2^{i}+1}}
n
=
2
m
,
q
=
2
m
,
gcd
(
m
,
i
)
=
1
,
t
(
x
)
=
u
q
x
+
x
q
u
{\displaystyle n=2m,q=2^{m},\gcd(m,i)=1,t(x)=u^{q}x+x^{q}u}
,
X
2
i
+
1
+
a
X
+
b
has no solution over
F
2
m
{\displaystyle X^{2^{i}+1}+aX+b{\mbox{ has no solution over }}\mathbb {F} _{2^{m}}}
[8]
C13
x
3
+
a
(
x
2
i
+
1
)
2
k
+
b
x
3
⋅
2
m
+
c
(
x
2
i
+
m
+
2
m
)
2
k
{\displaystyle x^{3}+a(x^{2^{i}+1})^{2^{k}}+bx^{3\cdot 2^{m}}+c(x^{2^{i+m}+2^{m}})^{2^{k}}}
n
=
2
m
=
10
,
(
a
,
b
,
c
)
=
(
β
,
0
,
0
)
,
i
=
3
,
k
=
2
,
β
primitive in
F
2
2
{\displaystyle n=2m=10,(a,b,c)=(\beta ,0,0),i=3,k=2,\beta {\text{ primitive in }}\mathbb {F} _{2^{2}}}
[9]
n
=
2
m
,
m
o
d
d
,
3
∤
m
,
(
a
,
b
,
c
)
=
(
β
,
β
2
,
1
)
,
β
primitive in
F
2
2
{\displaystyle n=2m,m\ odd,3\nmid m,(a,b,c)=(\beta ,\beta ^{2},1),\beta {\text{ primitive in }}\mathbb {F} _{2^{2}}}
,
i
∈
{
m
−
2
,
m
,
2
m
−
1
,
(
m
−
2
)
−
1
mod
n
}
{\displaystyle i\in \{m-2,m,2m-1,(m-2)^{-1}\mod n\}}
↑
L. Budaghyan, C. Carlet, G. Leander. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory, 54(9), pp. 4218-4229, 2008.
https://doi.org/10.1109/TIT.2008.928275
↑
L. Budaghyan and C. Carlet. Classes of Quadratic APN Trinomials and Hexanomials and Related Structures. IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 2354-2357, May 2008.
https://doi.org/10.1109/TIT.2008.920246
↑
L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150-159, April 2009.
https://doi.org/10.1016/j.ffa.2008.10.001
↑
4.0
4.1
L. Budaghyan, C. Carlet, G. Leander. On a construction of quadratic APN functions. Proceedings of IEEE Information Theory Workshop, ITW’09, pp. 374-378, Taormina, Sicily, Oct. 2009.
https://doi.org/10.1109/ITW.2009.5351383
↑
C. Bracken, E. Byrne, N. Markin, G. McGuire. A few more quadratic APN functions. Cryptography and Communications 3, pp. 45-53, 2008.
https://doi.org/10.1007/s12095-010-0038-7
↑
Y. Zhou, A. Pott. A new family of semifields with 2 parameters. Advances in Mathematics, v. 234, pp. 43-60, 2013.
https://doi.org/10.1016/j.aim.2012.10.014
↑
L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, I. Villa. Constructing APN Functions through Isotopic Shifts. IEEE Trans. Inform. Theory, early access article.
https://doi.org/10.1109/TIT.2020.2974471
↑
H. Taniguchi. On some quadratic APN functions. Designs, Codes and Cryptography 87, pp. 1973-1983, 2019.
https://doi.org/10.1007/s10623-018-00598-2
↑
L. Budaghyan, T. Helleseth, N. Kaleyski. A new family of APN quadrinomials. IEEE Trans. Inf. Theory, early access article.
https://doi.org/10.1109/TIT.2020.3007513
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Tables
Recent changes
Random page
Help
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information