Known infinite families of quadratic APN polynomials over GF(2^n)

From Boolean
Revision as of 17:08, 9 July 2020 by Nikolay (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
[math]\displaystyle{ N^\circ }[/math] Functions Conditions References
C1-C2 [math]\displaystyle{ x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}} }[/math] [math]\displaystyle{ n = pk, \gcd(k,3) = \gcd(s,3k) = 1, p \in \{3,4\} }[/math], [math]\displaystyle{ i = sk\bmod p, m = p -i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [1]
C3 [math]\displaystyle{ sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}+cx^{2^iq+1}+c^qx^{2^i+q} }[/math] [math]\displaystyle{ q=2^m, n=2m, gcd(i,m)=1, c\in \mathbb{F}_{2^n}, s \in \mathbb F_{2^n} \setminus \mathbb{F}_{q} }[/math], [math]\displaystyle{ X^{2^i+1}+cX^{2^i}+c^{q}X+1 \text{ has no solution } x \text{ s.t. }x^{q+1}=1 }[/math] [2]
C4 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n (a^3x^9) }[/math] [math]\displaystyle{ a\neq 0 }[/math] [3]
C5 [math]\displaystyle{ x^3+a^{-1} \mathrm {Tr}_n^3 (a^3x^9+a^6x^{18}) }[/math] [math]\displaystyle{ 3|n }[/math], [math]\displaystyle{ a\ne0 }[/math] [4]
C6 [math]\displaystyle{ x^3+a^{-1} \mathrm{Tr}_n^3(a^6x^{18}+a^{12}x^{36}) }[/math] [math]\displaystyle{ 3|n, a \ne 0 }[/math] [4]
C7-C9 [math]\displaystyle{ ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}} }[/math] [math]\displaystyle{ n=3k, \gcd(k,3)=\gcd(s,3k)=1, v, w\in\mathbb{F}_{2^k} }[/math], [math]\displaystyle{ vw \ne 1, 3|(k+s), u \text{ primitive in } \mathbb{F}_{2^n}^* }[/math] [5]
C10 [math]\displaystyle{ (x+x^{2{^m}})^{2^k+1}+u'(ux+u^{2^{m}} x^{2^{m}})^{(2^k+1)2^i}+u(x+x^{2^{m}})(ux+u^{2^{m}} x^{2^{m}}) }[/math] [math]\displaystyle{ n=2m, m\geqslant 2 }[/math] even, [math]\displaystyle{ \gcd(k, m)=1 }[/math] and [math]\displaystyle{ i \geqslant 2 }[/math] even, [math]\displaystyle{ u\text{ primitive in } \mathbb{F}_{2^n}^*, u' \in \mathbb{F}_{2^m} \text{ not a cube } }[/math] [6]
C11 [math]\displaystyle{ L(x)^{2^i}x+L(x)x^{2^i} }[/math] [math]\displaystyle{ n=km, m\gt 1, \gcd(n,i)=1, L(x)=\sum_{j=0}^{k-1}a_jx^{2^{jm}} }[/math] satisfies the conditions in Theorem 3.6 of [7] [7]
C12 [math]\displaystyle{ ut(x)(x^q+x)+t(x)^{2^{2i}+2^{3i}}+at(x)^{2^{2i}}(x^q+x)^{2^i}+b(x^q+x)^{2^i+1} }[/math] [math]\displaystyle{ n=2m, q=2^m, \gcd(m,i)=1, t(x)=u^qx+x^qu }[/math], [math]\displaystyle{ X^{2^i+1}+aX+b \mbox{ has no solution over }\mathbb{F}_{2^m} }[/math] [8]
C13 [math]\displaystyle{ x^3 + a (x^{2^i + 1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m} + 2^m})^{2^k} }[/math] [math]\displaystyle{ n = 2m = 10, (a,b,c) = (\beta,0,0), i = 3, k = 2, \beta \text{ primitive in } \mathbb{F}_{2^2} }[/math] [9]
[math]\displaystyle{ n = 2m, m\ odd, 3 \nmid m, (a,b,c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2} }[/math], [math]\displaystyle{ i \in \{ m-2, m, 2m-1, (m-2)^{-1} \mod n \} }[/math]
  1. L. Budaghyan, C. Carlet, G. Leander. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory, 54(9), pp. 4218-4229, 2008. https://doi.org/10.1109/TIT.2008.928275
  2. L. Budaghyan and C. Carlet. Classes of Quadratic APN Trinomials and Hexanomials and Related Structures. IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 2354-2357, May 2008. https://doi.org/10.1109/TIT.2008.920246
  3. L. Budaghyan, C. Carlet, G. Leander. Constructing new APN functions from known ones. Finite Fields and Their Applications, v. 15, issue 2, pp. 150-159, April 2009. https://doi.org/10.1016/j.ffa.2008.10.001
  4. 4.0 4.1 L. Budaghyan, C. Carlet, G. Leander. On a construction of quadratic APN functions. Proceedings of IEEE Information Theory Workshop, ITW’09, pp. 374-378, Taormina, Sicily, Oct. 2009. https://doi.org/10.1109/ITW.2009.5351383
  5. C. Bracken, E. Byrne, N. Markin, G. McGuire. A few more quadratic APN functions. Cryptography and Communications 3, pp. 45-53, 2008. https://doi.org/10.1007/s12095-010-0038-7
  6. Y. Zhou, A. Pott. A new family of semifields with 2 parameters. Advances in Mathematics, v. 234, pp. 43-60, 2013. https://doi.org/10.1016/j.aim.2012.10.014
  7. L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, I. Villa. Constructing APN Functions through Isotopic Shifts. IEEE Trans. Inform. Theory, early access article. https://doi.org/10.1109/TIT.2020.2974471
  8. H. Taniguchi. On some quadratic APN functions. Designs, Codes and Cryptography 87, pp. 1973-1983, 2019. https://doi.org/10.1007/s10623-018-00598-2
  9. L. Budaghyan, T. Helleseth, N. Kaleyski. A new family of APN quadrinomials. IEEE Trans. Inf. Theory, early access article. https://doi.org/10.1109/TIT.2020.3007513