Known infinite families of APN power functions over GF(2^n)

From Boolean
Revision as of 14:28, 15 March 2019 by Nikolay (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The following table provides a summary of all known infinite families of power APN functions of the form [math]\displaystyle{ F(x) = x^d }[/math].

Family Exponent Conditions [math]\displaystyle{ \deg(x^d) }[/math] Reference
Gold [math]\displaystyle{ 2^i + 1 }[/math] [math]\displaystyle{ \gcd(i,n) = 1 }[/math] [math]\displaystyle{ 2 }[/math] [1][2]
Kasami [math]\displaystyle{ 2^{2i} - 2^i + 1 }[/math] [math]\displaystyle{ \gcd(i,n) = 1 }[/math] [math]\displaystyle{ i + 1 }[/math] [3][4]
Welch [math]\displaystyle{ 2^t + 3 }[/math] [math]\displaystyle{ n = 2t + 1 }[/math] [math]\displaystyle{ 3 }[/math] [5]
Niho [math]\displaystyle{ 2^t + 2^{t/2} - 1, t }[/math] even [math]\displaystyle{ n = 2t + 1 }[/math] [math]\displaystyle{ (t+2)/2 }[/math] [6]
[math]\displaystyle{ 2^t + 2^{(3t+1)/2} - 1, t }[/math] odd [math]\displaystyle{ t + 1 }[/math]
Inverse [math]\displaystyle{ 2^{2t} - 1 }[/math] [math]\displaystyle{ n = 2t + 1 }[/math] [math]\displaystyle{ n-1 }[/math] [2][7]
Dobbertin [math]\displaystyle{ 2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1 }[/math] [math]\displaystyle{ n = 5i }[/math] [math]\displaystyle{ i + 3 }[/math] [8]
  1. Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory. 1968;14(1):154-6.
  2. 2.0 2.1 Nyberg K. Differentially uniform mappings for cryptography. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 55-64).
  3. Janwa H, Wilson RM. Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. InInternational Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes 1993 May 10 (pp. 180-194).
  4. Kasami T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Information and Control. 1971 May 1;18(4):369-94.
  5. Dobbertin H. Almost perfect nonlinear power functions on [math]\displaystyle{ GF(2^n) }[/math]: the Welch case. IEEE Transactions on Information Theory. 1999 May;45(4):1271-5.
  6. Dobbertin H. Almost perfect nonlinear power functions on [math]\displaystyle{ GF(2^n) }[/math]: the Niho case. Information and Computation. 1999 May 25;151(1-2):57-72.
  7. Beth T, Ding C. On almost perfect nonlinear permutations. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 65-76).
  8. Dobbertin H. Almost perfect nonlinear power functions on [math]\displaystyle{ GF(2^n) }[/math]: a new case for n divisible by 5. InFinite Fields and Applications 2001 (pp. 113-121).