Difference between revisions of "Known infinite families of APN power functions over GF(2^n)"
Line 14: | Line 14: | ||
<td><math>2^i + 1</math></td> | <td><math>2^i + 1</math></td> | ||
<td><math>\gcd(i,n) = 1</math></td> | <td><math>\gcd(i,n) = 1</math></td> | ||
− | <td>2</td> | + | <td><math>2</math></td> |
− | <td> <ref>Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory. 1988;14(1):154-6.</ref><ref name="kaisa_ref">Nyberg K. Differentially uniform mappings for cryptography. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 55-64) | + | <td> <ref>Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory. 1988;14(1):154-6.</ref><ref name="kaisa_ref">Nyberg K. Differentially uniform mappings for cryptography. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 55-64).</ref> |
</td> | </td> | ||
</tr> | </tr> | ||
Line 25: | Line 25: | ||
<td><math>\gcd(i,n) = 1</math></td> | <td><math>\gcd(i,n) = 1</math></td> | ||
<td><math>i + 1</math></td> | <td><math>i + 1</math></td> | ||
− | <td><ref>Janwa H, Wilson RM. Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. InInternational Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes 1993 May 10 (pp. 180-194) | + | <td><ref>Janwa H, Wilson RM. Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. InInternational Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes 1993 May 10 (pp. 180-194).</ref><ref>Kasami T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Information and Control. 1971 May 1;18(4):369-94.</ref></td> |
</tr> | </tr> | ||
Line 54: | Line 54: | ||
<td><math>n = 2t + 1</math></td> | <td><math>n = 2t + 1</math></td> | ||
<td><math>n-1</math></td> | <td><math>n-1</math></td> | ||
− | <td><ref name="kaisa_ref" />Beth T, Ding C. On almost perfect nonlinear permutations. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 65-76) | + | <td><ref name="kaisa_ref" /><ref>Beth T, Ding C. On almost perfect nonlinear permutations. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 65-76). </ref> |
</tr> | </tr> | ||
Line 62: | Line 62: | ||
<td><math>n = 5i</math></td> | <td><math>n = 5i</math></td> | ||
<td><math>i + 3</math></td> | <td><math>i + 3</math></td> | ||
− | <td><ref>Dobbertin H. Almost perfect nonlinear power functions on <math>GF(2^n)</math>: a new case for n divisible by 5. InFinite Fields and Applications 2001 (pp. 113-121) | + | <td><ref>Dobbertin H. Almost perfect nonlinear power functions on <math>GF(2^n)</math>: a new case for n divisible by 5. InFinite Fields and Applications 2001 (pp. 113-121).</ref></td> |
</tr> | </tr> | ||
</table> | </table> |
Revision as of 12:56, 11 February 2019
The following table provides a summary of all known infinite families of power APN functions of the form .
Family | Exponent | Conditions | Reference | |
---|---|---|---|---|
Gold | [1][2] | |||
Kasami | [3][4] | |||
Welch | [5] | |||
Niho | even | [6] | ||
odd | ||||
Inverse | [2][7] | |||
Dobbertin | [8] |
- ↑ Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory. 1988;14(1):154-6.
- ↑ 2.0 2.1 Nyberg K. Differentially uniform mappings for cryptography. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 55-64).
- ↑ Janwa H, Wilson RM. Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. InInternational Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes 1993 May 10 (pp. 180-194).
- ↑ Kasami T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Information and Control. 1971 May 1;18(4):369-94.
- ↑ Dobbertin H. Almost perfect nonlinear power functions on : the Welch case. IEEE Transactions on Information Theory. 1999 May;45(4):1271-5.
- ↑ Dobbertin H. Almost perfect nonlinear power functions on : the Niho case. Information and Computation. 1999 May 25;151(1-2):57-72.
- ↑ Beth T, Ding C. On almost perfect nonlinear permutations. InWorkshop on the Theory and Application of of Cryptographic Techniques 1993 May 23 (pp. 65-76).
- ↑ Dobbertin H. Almost perfect nonlinear power functions on : a new case for n divisible by 5. InFinite Fields and Applications 2001 (pp. 113-121).