Differentially 4-uniform permutations

From Boolean
Revision as of 20:12, 10 July 2020 by Nikolay (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Functions Conditions References
[math]\displaystyle{ x^{2^i+1} }[/math] [math]\displaystyle{ gcd(i,n) = 2, n = 2t }[/math] and t is odd [1][2]
[math]\displaystyle{ x^{2^{2i}-2^i+1} }[/math] [math]\displaystyle{ gcd(i,n) = 2, n = 2t }[/math] and t is odd [3]
[math]\displaystyle{ x^{2^n-2} }[/math] [math]\displaystyle{ n = 2t }[/math] (inverse) [2][4]
[math]\displaystyle{ x^{2^{2t}-2^t+1} }[/math] [math]\displaystyle{ n = 4t }[/math] and t is odd [5]
[math]\displaystyle{ \alpha x^{2^s+1}+\alpha^{2^t}x^{{2-t}+2^{t+s}} }[/math] [math]\displaystyle{ n = 3t, t/2 }[/math] is odd, [math]\displaystyle{ gcd(n,s) = 2, 3|t + s }[/math] and [math]\displaystyle{ \alpha }[/math] is a primitive element in [math]\displaystyle{ \mathbb{F}_{2^n} }[/math] [6]
[math]\displaystyle{ x^{-1} + \mathrm {Tr}_{n}^{1}(x+ (x^{-1}+1)^{-1}) }[/math] [math]\displaystyle{ n=2t }[/math] is even [7]
[math]\displaystyle{ x^{-1} + \mathrm {Tr}_{n}^{1}(x^{-3(2^{k}+1)}+ (x^{-1}+1)^{3(2^{k}+1)}) }[/math] [math]\displaystyle{ n=2t }[/math] and [math]\displaystyle{ 2\leq k \leq t-1 }[/math] [7]
[math]\displaystyle{ L_u(F^{-1}(x))|_{H_u} }[/math] [math]\displaystyle{ n=2t,F(x) }[/math] is a quadratic APN permutation on [math]\displaystyle{ {\mathbb F} _ {2^{n+1}}, u \in {\mathbb F}^{*}_{2^{n+1}}, }[/math]
[math]\displaystyle{ L_u(x)= F(x)+F(x+u)+F(u), }[/math]
[math]\displaystyle{ H_u = \{L_u(x)|x \in {\mathbb F} _ {2^{n+1}}\} }[/math]
[8]
[math]\displaystyle{ \displaystyle\sum_{i=0}^{2^{n}-3} x^{i} }[/math] [math]\displaystyle{ n=2t, }[/math] t is odd [9]
[math]\displaystyle{ x^{-1} + t(x^{2^{s}}+x)^{2^{sn}-1} }[/math] [math]\displaystyle{ s }[/math] is even [math]\displaystyle{ , t \in {\mathbb F}^{*} _ {2^{s}}, }[/math] or [math]\displaystyle{ s, n }[/math] are odd, [math]\displaystyle{ t \in {\mathbb F}^{*} _ {2^{s}} }[/math] [10]
[math]\displaystyle{ x^{2^{k}+1} + t(x^{2^{s}}+x)^{2^{sn}-1} }[/math] [math]\displaystyle{ n, s }[/math] are odd, [math]\displaystyle{ t \in {\mathbb F}^{*} _ {2^{s}}, gcd(k, sn) = 1 }[/math] [11]
[math]\displaystyle{ (x, x_n) \mapsto }[/math]
[math]\displaystyle{ ((1+x_{n})x^{-1}+x_{n}\alpha x^{-1}, f(x, x_{n})) }[/math]
[math]\displaystyle{ n }[/math] is even [math]\displaystyle{ x, \alpha \in {\mathbb F} _ {2^{n-1}}, x_n \in {\mathbb F} _ {2}, \mathrm{Tr}_{n-1}(\alpha) = \mathrm{Tr}_{n-1}\left(\frac{1}{\alpha}\right) = 1, }[/math]
[math]\displaystyle{ f(x, x_n) }[/math] is [math]\displaystyle{ (n, 1)- }[/math]function
[12]
  1. R. Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory, 14, pp. 154-156, 1968. https://doi.org/10.1109/TIT.1968.1054106
  2. 2.0 2.1 K. Nyberg. Differentially uniform mappings for cryptography. Advances in Cryptography, EUROCRYPT’93, Lecture Notes in Computer Science 765, pp. 55-64, 1994. Lecture Notes in Computer Science, vol 765. Springer, Berlin, Heidelberg https://doi.org/10.1007/3-540-48285-7_6
  3. T. Kasami. The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control, 18, pp. 369-394, 1971. https://doi.org/10.1016/S0019-9958(71)90473-6
  4. G. Lachaud, J. Wolfmann. The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory, vol. 36, no. 3, pp. 686-692, 1990. https://doi.org/10.1109/18.54892
  5. C. Bracken, G. Leander. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields and Their Applications, vol. 16, no. 4, pp. 231-242, 2010. https://doi.org/10.1016/j.ffa.2010.03.001
  6. C. Bracken, C. H. Tan, Y. Tan. Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields and Their Applications, vol. 18, no. 3, pp. 537-546, 2012. https://doi.org/10.1016/j.ffa.2011.11.006
  7. 7.0 7.1 Y. Tan, L. Qu, C. H. Tan, C. Li. New Families of Differentially 4-Uniform Permutations over F(22k). In: T. Helleseth, J. Jedwab (eds) Sequences and Their Applications - SETA 2012. SETA 2012. Lecture Notes in Computer Science, vol. 7280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30615-0_3
  8. Y. Li, M. Wang. Constructing differentially 4-uniform permutations over GF(22m) from quadratic APN permutations over GF(22m+1). Designs, Codes and Cryptography, vol. 72, pp. 249-264, 2014. https://doi.org/10.1007/s10623-012-9760-9
  9. Y. Yu, M. Wang, Y. Li. Constructing Differentially 4 Uniform Permutations from Known Ones. Chinese Journal of Electronics, vol. 22, no. 3, pp. 495-499, 2013.
  10. Z. Zha, L. Hu, S. Sun. Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields and Their Applications, vol. 25, pp. 64-78, 2014. https://doi.org/10.1016/j.ffa.2013.08.003
  11. Xu G, Cao X, Xu S. Constructing new differentially 4-uniform permutations and APN functions over finite fields. Cryptography and Communications-Discrete Structures, Boolean Functions and Sequences. Pre-print. 2014.
  12. C. Carlet, D. Tang, X. Tang, Q. Liao. New Construction of Differentially 4-Uniform Bijections. In: D. Lin, S. Xu, M. Yung (eds) Information Security and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science, vol. 8567, Springer, Cham. https://doi.org/10.1007/978-3-319-12087-4_2