Commutative Presemifields and Semifields

From Boolean
Revision as of 10:26, 29 August 2019 by Ivi062 (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Introduction

A semifields is a ring with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identity is called a semifield. Any finite presemifield can be represented by [math]\displaystyle{ \mathbb{S}=(\mathbb{F}_{p^n},+,\star) }[/math], for [math]\displaystyle{ p }[/math] a prime, [math]\displaystyle{ n }[/math] a positive integer, [math]\displaystyle{ \mathbb{S}=(\mathbb{F}_{p^n},+) }[/math] additive group and [math]\displaystyle{ x\star y }[/math] multiplication linear in each variable.

Two presemifields [math]\displaystyle{ \mathbb{S}_1=(\mathbb{F}_{p^n},+,\star) }[/math] and [math]\displaystyle{ \mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ) }[/math] are called isotopic if there exist three linear permutation [math]\displaystyle{ T,M,N }[/math] of [math]\displaystyle{ \mathbb{F}_{p^n} }[/math] such that [math]\displaystyle{ T(x\star y)=M(x)\circ N(y) }[/math], for any [math]\displaystyle{ x,y\in\mathbb{F}_{p^n} }[/math]. If [math]\displaystyle{ M=N }[/math] then they are called strongly isotopic. Each commutative presemifields of odd order defines a planar DO polynomial and viceversa:

  • given [math]\displaystyle{ \mathbb{S}=(\mathbb{F}_{p^n},+,\star) }[/math] let [math]\displaystyle{ F_\mathcal{S}(x)=\frac{1}{2}(x\star x) }[/math];
  • given [math]\displaystyle{ F }[/math] let [math]\displaystyle{ \mathbb{S}_F=(\mathbb{F}_{p^n},+,\star) }[/math] defined by [math]\displaystyle{ x\star y=F(x+y)-F(x)-F(y) }[/math].

Hence two quadratic planar functions [math]\displaystyle{ F,F' }[/math] are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have:

  • [math]\displaystyle{ F,F' }[/math] are CCZ-equivalent if and only if [math]\displaystyle{ \mathbb{S}_F,\mathbb{S}_{F'} }[/math] are strongly isotopic;
  • for [math]\displaystyle{ n }[/math] odd, isotopic coincides with strongly isotopic;
  • if [math]\displaystyle{ F,F' }[/math] are isotopic equivalent, then there exists a linear map [math]\displaystyle{ L }[/math] such that [math]\displaystyle{ F' }[/math] is EA-equivalent to [math]\displaystyle{ F(x+L(x))-F(x)-F(L(x)) }[/math].