Difference between revisions of "Commutative Presemifields and Semifields"
m (→On Presemifields and Semifields) |
|||
Line 33: | Line 33: | ||
Any finite presemifield can be represented by <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math>, | Any finite presemifield can be represented by <math>\mathbb{S}=(\mathbb{F}_{p^n},+,\star)</math>, | ||
for <math>p</math> a prime, <math>n</math> a positive integer, <math>\mathbb{S}=(\mathbb{F}_{p^n},+)</math> additive group and <math>x\star y</math> multiplication linear in each variable. | for <math>p</math> a prime, <math>n</math> a positive integer, <math>\mathbb{S}=(\mathbb{F}_{p^n},+)</math> additive group and <math>x\star y</math> multiplication linear in each variable. | ||
+ | Every commutative presemifield can be transformed into a commutative semifield. | ||
Two presemifields <math>\mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)</math> and <math>\mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)</math> are called <span class="definition">isotopic</span> if there exist three linear permutations <math>T,M,N</math> of <math>\mathbb{F}_{p^n}</math> such that | Two presemifields <math>\mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)</math> and <math>\mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)</math> are called <span class="definition">isotopic</span> if there exist three linear permutations <math>T,M,N</math> of <math>\mathbb{F}_{p^n}</math> such that | ||
Line 56: | Line 57: | ||
==Properties== | ==Properties== | ||
− | |||
− | |||
Hence two quadratic planar functions <math>F,F'</math> are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have: | Hence two quadratic planar functions <math>F,F'</math> are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have: | ||
* <math>F,F'</math> are CCZ-equivalent if and only if <math>\mathbb{S}_F,\mathbb{S}_{F'}</math> are strongly isotopic; | * <math>F,F'</math> are CCZ-equivalent if and only if <math>\mathbb{S}_F,\mathbb{S}_{F'}</math> are strongly isotopic; | ||
* for <math>n</math> odd, isotopic coincides with strongly isotopic; | * for <math>n</math> odd, isotopic coincides with strongly isotopic; | ||
− | * if <math>F,F'</math> are isotopic equivalent, then there exists a linear map <math>L</math> such that <math>F'</math> is EA-equivalent to <math>F(x+L(x))-F(x)-F(L(x))</math>. | + | * if <math>F,F'</math> are isotopic equivalent, then there exists a linear map <math>L</math> such that <math>F'</math> is EA-equivalent to <math>F(x+L(x))-F(x)-F(L(x))</math>; |
+ | * any commutative presemifield of odd order can generate at most two CCZ-equivalence classes of planar DO polynomials; | ||
+ | * if <math>\mathbb{S}_1</math> and <math>\mathbb{S}_2</math> are isotopic commutative semifields of characteristic <math>p</math> with order of middle nuclei and nuclei <math>p^m</math> and <math>p^k</math> respectively, then either one of the following is satisfied: | ||
+ | ** <math>m/k</math> is odd and the semifields are strongly isotopic, | ||
+ | ** <math>m/k</math> is even and the semifields are strongly isotopic or the only isotopisms are of the form <math>(\alpha\star N,N,L)</math> with <math>\alpha\in N_m(\mathbb{S}_1)</math> non-square. |
Revision as of 10:58, 5 September 2019
Background
For a prime and a positive integer let be the finite field with elements. Let be a map from the finite field to itself. Such function admits a unique representation as a polynomial of degree at most , i.e.
.
The function is
- linear if ,
- affine if it is the sum of a linear function and a constant,
- DO (Dembowski-Ostrim) polynomial if ,
- quadratic if it is the sum of a DO polynomial and an affine function.
For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \delta} a positive integer, the function is called differentially Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \delta} -uniform if for any pairs , with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a\ne0} , the equation admits at most Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \delta} solutions.
A function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} is called planar or perfect nonlinear (PN) if . Obviously such functions exist only for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} an odd prime. In the even case the smallest possible case for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \delta} is two (APN function).
For planar function we have that the all the nonzero derivatives, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle D_aF(x)=F(x+a)-F(x)} , are permutations.
Equivalence Relations
Two functions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} and from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}} to itself are called:
- affine equivalent if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F'=A_1\circ F\circ A_2} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_1,A_2} are affine permutations;
- EA-equivalent (extended-affine) if , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A} is affine and is afffine equivalent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} ;
- CCZ-equivalent if there exists an affine permutation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}} of such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}(G_F)=G_{F'}} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle G_F=\lbrace (x,F(x)) : x\in\mathbb{F}_{p^n}\rbrace} .
CCZ-equivalence is the most general known equivalence relation for functions which preserves differential uniformity. Affine and EA-equivalence are its particular cases. For the case of quadratic planar functions the isotopic equivalence is more general than CCZ-equivalence, where two maps are isotopic equivalent if the corresponding presemifields are isotopic.
On Presemifields and Semifields
A presemifield is a ring with left and right distributivity and with no zero divisor. A presemifield with a multiplicative identity is called a semifield. Any finite presemifield can be represented by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} , for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p} a prime, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n} a positive integer, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+)} additive group and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x\star y} multiplication linear in each variable. Every commutative presemifield can be transformed into a commutative semifield.
Two presemifields Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_1=(\mathbb{F}_{p^n},+,\star)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}_2=(\mathbb{F}_{p^n},+,\circ)} are called isotopic if there exist three linear permutations Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T,M,N} of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{F}_{p^n}} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T(x\star y)=M(x)\circ N(y)} , for any Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x,y\in\mathbb{F}_{p^n}} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M=N} then they are called strongly isotopic. Each commutative presemifields of odd order defines a planar DO polynomial and viceversa:
- given Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}=(\mathbb{F}_{p^n},+,\star)} let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F_\mathbb{S}(x)=\frac{1}{2}(x\star x)} ;
- given Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} let defined by .
Given a finite semifield, the subsets
for all
for all
for all
are called left, middle and right nucleus of .
The set is called the nucleus. All these sets are finite field and, when is commutative, . The order of the different nuclei are invariant under isotopism.
Properties
Hence two quadratic planar functions are isotopic equivalent if their corresponding presemifields are isotopic. Moreover, we have:
- are CCZ-equivalent if and only if are strongly isotopic;
- for odd, isotopic coincides with strongly isotopic;
- if are isotopic equivalent, then there exists a linear map such that is EA-equivalent to ;
- any commutative presemifield of odd order can generate at most two CCZ-equivalence classes of planar DO polynomials;
- if and are isotopic commutative semifields of characteristic with order of middle nuclei and nuclei and respectively, then either one of the following is satisfied:
- is odd and the semifields are strongly isotopic,
- is even and the semifields are strongly isotopic or the only isotopisms are of the form with non-square.