Difference between revisions of "Classification of Quadratic APN Trinomials, Quadrinomials, Pentanomials, Hexanomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with all Coefficients equal to 1"

From Boolean Functions
Jump to: navigation, search
Line 1: Line 1:
Table 1: Classification of Quadratic APN Trinomials (CCZ-inequivalent to infinite monomial
+
The following tables list CCZ-inequivalent representatives found by systematically searching for APN functions among all trinomials, quadrinomials, pentanomials and hexanomials with coefficients in <math>\mathbb{F}_{2}</math> over <math>\mathbb{F}_{2^n}</math> with <math>6 \le n \le 11</math> <ref>Sun B. On Classification and Some Properties of APN Functions.</ref>. The tables also list which equivalence class from <ref name="edelPott">Edel Y, Pott A. A new almost perfect nonlinear function which is not quadratic. Adv. in Math. of Comm.. 2009 Mar;3(1):59-81.</ref> the functions belong to. Only polynomials inequivalent to power functions are considered. If the polynomial is equivalent to a family from the [[Known infinite families of quadratic APN polynomials over GF(2^n)|table of infinite families]], this is also listed.
families) in Small Dimensions with Coefficients in <math>\mathbb{F}_2</math>
+
 
 +
== Trinomials ==
  
 
<table class="borderless">
 
<table class="borderless">
Line 7: Line 8:
 
<th><math>N^\circ</math></th>
 
<th><math>N^\circ</math></th>
 
<th>Functions</th>
 
<th>Functions</th>
<th>Families from tables 5</th>
+
<th>Familiy</th>
<th>Relation to [6]</th>
+
<th>Relation to <ref name="edelPott"></ref></th>
 
</tr>
 
</tr>
  
Line 77: Line 78:
  
  
Table 2: Classification of Quadratic APN Quadrinomials (CCZ-inequivalent with infinite monomial
+
== Quadrinomials ==
families) in Small Dimensions with Coefficients as 1
 
  
 
<table class="borderless">
 
<table class="borderless">
Line 85: Line 85:
 
<th><math>N^\circ</math></th>
 
<th><math>N^\circ</math></th>
 
<th>Functions</th>
 
<th>Functions</th>
<th>Families from tables 5</th>
+
<th>Families</th>
<th>Relation to [6]</th>
+
<th>Relation to <ref name="edelPott"></ref></th>
 
</tr>
 
</tr>
  
Line 170: Line 170:
  
  
Table 3: Classification of Quadratic APN Quadrinomials (CCZ-inequivalent with infinite monomial
+
== Pentanomials ==
families) in Small Dimensions with Coefficients as 1
 
  
  
Line 179: Line 178:
 
<th><math>N^\circ</math></th>
 
<th><math>N^\circ</math></th>
 
<th>Functions</th>
 
<th>Functions</th>
<th>Families from tables 5</th>
+
<th>Families</th>
<th>Relation to [6]</th>
+
<th>Relation to <ref name="edelPott"></ref></th>
 
</tr>
 
</tr>
  
Line 330: Line 329:
  
  
Table 4: Classification of Quadratic APN Hexanomial (CCZ-inequivalent with infinite monomial
+
== Hexanomials ==
families) in Small Dimensions with Coefficients as 1
 
  
 
<table>
 
<table>
Line 339: Line 337:
 
<th><math>N^\circ</math></th>
 
<th><math>N^\circ</math></th>
 
<th>Functions</th>
 
<th>Functions</th>
<th>Families from tables 5</th>
+
<th>Families</th>
<th>Relation to [6]</th>
+
<th>Relation to <ref name="edelPott"></ref></th>
 
</tr>
 
</tr>
  
Line 470: Line 468:
  
 
</table>
 
</table>
 
 
Table 5: Known classes of quadratic APN polynomials CCZ-inequivalent to APN monomials on <math>\mathbb{F}_{2^n}</math> <math>u</math> is primitive in <math>\mathbb{F}_{2^n}^*</math>}
 
 
<table>
 
<tr>
 
<th><math>N^\circ</math></th>
 
<th>Fanctions</th>
 
<th>Conditions</th>
 
<th>Reference</th>
 
</tr>
 
 
<tr>
 
<td><math>1-2</math></td>
 
<td><math>x^{2^s+1}+u^{2^k-1}x^{2^{ik}+2^{mk+s}}</math></td>
 
<td><math>n=pk,  p\in \{3,4\},  \gcd(k,3)=\gcd(s,3k)=1,  i=sk  \bmod p,  m=p-i,  n\geqslant12</math></td>
 
<td><ref>Budaghyan L, Carlet C, Leander G. Two classes of quadratic APN binomials inequivalent to power functions. IEEE Transactions on Information Theory. 2008 Sep;54(9):4218-29.</ref></td>
 
</tr>
 
 
<tr>
 
<td><math>3</math></td>
 
<td><math>x^{2^{2i}+2^i}+bx^{q+1}+cx^{q(2^{2i}+2^i)}</math></td>
 
<td><math>q=2^{m}, n=2m, cb^{q}+b\neq 0, \gcd(i,m)=1,  \gcd(2^{i}+1,q+1)\neq 1, c \not\in \{\lambda^{(2^{i}+1)(q-1)}, \lambda\in \mathbb{F}_{2^{n}}\},  c^{q+1}=1</math></td> 
 
<td><ref>Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.</ref></td>
 
</tr>
 
 
<tr>
 
<td><math>4</math></td>
 
<td><math>x(x^{2^i}+x^q+cx^{2^iq})+x^{2^i}(c^qx^q+sx^{2^iq})+x^{(2^i+1)q}</math></td>
 
<td><math>q=2^{m},n=2m, \gcd(i,m)=1, c\in\mathbb{F}_{2^n},  s\in\mathbb{F}_{2^n}\backslash \mathbb{F}_q, X^{2^i+1}+cX^{2^i}+c^qX+1</math> is irreducible over <math>\mathbb{F}_{2^n}</math></td> 
 
<td><ref>Budaghyan L, Carlet C. Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Transactions on Information Theory. 2008 May;54(5):2354-7.</ref></td>
 
</tr>
 
 
<tr>
 
<td><math>5</math></td>
 
<td><math>x^3+a^{-1}tr_n(a^3x^9)</math></td>
 
<td><math>a\ne0</math></td> 
 
<td><ref>Budaghyan L, Carlet C, Leander G. Constructing new APN functions from known ones. Finite Fields and Their Applications. 2009 Apr 1;15(2):150-9.</ref><ref name="workshope">Budaghyan L, Carlet C, Leander G. On a construction of quadratic APN functions. In2009 IEEE Information Theory Workshop 2009 Oct 11 (pp. 374-378). IEEE.</ref></td>
 
</tr>
 
 
<tr>
 
<td><math>6</math></td>
 
<td><math>x^3+a^{-1}tr_n^3(a^3x^9+a^6x^{18})</math></td>
 
<td><math>3|n, a\ne0</math></td> 
 
<td><ref name="workshope"/></td>
 
</tr>
 
 
<tr>
 
<td><math>7</math></td>
 
<td><math>x^3+a^{-1}tr_n^3(a^6x^{18}+a^{12}x^{36})</math></td>
 
<td><math>3|n, a\ne0</math></td> 
 
<td><ref name="workshope"/></td>
 
</tr>
 
 
<tr>
 
<td><math>8-10</math></td>
 
<td><math>ux^{2^s+1}+u^{2^k} x^{2^{-k}+2^{k+s}}+vx^{2^{-k}+1}+wu^{2^k+1}x^{2^{s}+2^{k+s}}</math></td>
 
<td><math>n=3k, 3|(k+s), \gcd(k,3)=\gcd(s,3k)=1,v, w\in\mathbb{F}_{2^k}, vw \ne 1</math></td> 
 
<td><ref>Bracken C, Byrne E, Markin N, Mcguire G. New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications. 2008 Jul 1;14(3):703-14.</ref></td>
 
</tr>
 
 
<tr>
 
<td><math>11</math></td>
 
<td><math>(x+x^{2^m})^{2^k+1}+u^{(2^n-1)/(2^m-1)} (ux+u^{2^m}x^{2^m})^{(2^k+1)2^i}+u(x+x^{2^m})(ux+u^{2^m}x^{2^m})</math></td>
 
<td><math>m\geqslant 2, 2|m,n=2m,\gcd(k, m)=1, i</math> is even</td> 
 
<td><ref>Zhou Y, Pott A. A new family of semifields with 2 parameters. Advances in Mathematics. 2013 Feb 15;234:43-60.</ref></td>
 
</tr>
 

Revision as of 13:19, 26 February 2019

The following tables list CCZ-inequivalent representatives found by systematically searching for APN functions among all trinomials, quadrinomials, pentanomials and hexanomials with coefficients in over with [1]. The tables also list which equivalence class from [2] the functions belong to. Only polynomials inequivalent to power functions are considered. If the polynomial is equivalent to a family from the table of infinite families, this is also listed.

Trinomials

Functions Familiy Relation to [2]


Quadrinomials

Functions Families Relation to [2]


Pentanomials

Functions Families Relation to [2]


Hexanomials

Functions Families Relation to [2]
  1. Sun B. On Classification and Some Properties of APN Functions.
  2. 2.0 2.1 2.2 2.3 2.4 Edel Y, Pott A. A new almost perfect nonlinear function which is not quadratic. Adv. in Math. of Comm.. 2009 Mar;3(1):59-81.