Difference between revisions of "Classification of Quadratic APN Trinomials, Quadrinomials, Pentanomials, Hexanomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with all Coefficients equal to 1"
Line 1: | Line 1: | ||
− | + | The following tables list CCZ-inequivalent representatives found by systematically searching for APN functions among all trinomials, quadrinomials, pentanomials and hexanomials with coefficients in <math>\mathbb{F}_{2}</math> over <math>\mathbb{F}_{2^n}</math> with <math>6 \le n \le 11</math> <ref>Sun B. On Classification and Some Properties of APN Functions.</ref>. The tables also list which equivalence class from <ref name="edelPott">Edel Y, Pott A. A new almost perfect nonlinear function which is not quadratic. Adv. in Math. of Comm.. 2009 Mar;3(1):59-81.</ref> the functions belong to. Only polynomials inequivalent to power functions are considered. If the polynomial is equivalent to a family from the [[Known infinite families of quadratic APN polynomials over GF(2^n)|table of infinite families]], this is also listed. | |
− | + | ||
+ | == Trinomials == | ||
<table class="borderless"> | <table class="borderless"> | ||
Line 7: | Line 8: | ||
<th><math>N^\circ</math></th> | <th><math>N^\circ</math></th> | ||
<th>Functions</th> | <th>Functions</th> | ||
− | <th> | + | <th>Familiy</th> |
− | <th>Relation to | + | <th>Relation to <ref name="edelPott"></ref></th> |
</tr> | </tr> | ||
Line 77: | Line 78: | ||
− | + | == Quadrinomials == | |
− | |||
<table class="borderless"> | <table class="borderless"> | ||
Line 85: | Line 85: | ||
<th><math>N^\circ</math></th> | <th><math>N^\circ</math></th> | ||
<th>Functions</th> | <th>Functions</th> | ||
− | <th>Families | + | <th>Families</th> |
− | <th>Relation to | + | <th>Relation to <ref name="edelPott"></ref></th> |
</tr> | </tr> | ||
Line 170: | Line 170: | ||
− | + | == Pentanomials == | |
− | |||
Line 179: | Line 178: | ||
<th><math>N^\circ</math></th> | <th><math>N^\circ</math></th> | ||
<th>Functions</th> | <th>Functions</th> | ||
− | <th>Families | + | <th>Families</th> |
− | <th>Relation to | + | <th>Relation to <ref name="edelPott"></ref></th> |
</tr> | </tr> | ||
Line 330: | Line 329: | ||
− | + | == Hexanomials == | |
− | |||
<table> | <table> | ||
Line 339: | Line 337: | ||
<th><math>N^\circ</math></th> | <th><math>N^\circ</math></th> | ||
<th>Functions</th> | <th>Functions</th> | ||
− | <th>Families | + | <th>Families</th> |
− | <th>Relation to | + | <th>Relation to <ref name="edelPott"></ref></th> |
</tr> | </tr> | ||
Line 470: | Line 468: | ||
</table> | </table> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 13:19, 26 February 2019
The following tables list CCZ-inequivalent representatives found by systematically searching for APN functions among all trinomials, quadrinomials, pentanomials and hexanomials with coefficients in over with [1]. The tables also list which equivalence class from [2] the functions belong to. Only polynomials inequivalent to power functions are considered. If the polynomial is equivalent to a family from the table of infinite families, this is also listed.
Trinomials
Functions | Familiy | Relation to [2] | ||
---|---|---|---|---|
Quadrinomials
Functions | Families | Relation to [2] | ||
---|---|---|---|---|
Pentanomials
Functions | Families | Relation to [2] | ||
---|---|---|---|---|
Hexanomials
Functions | Families | Relation to [2] | ||
---|---|---|---|---|