Difference between revisions of "CCZ-equivalence of Families of APN Polynomials over GF(2^n) from the table (for n between 6 and 11)"

From Boolean Functions
Jump to: navigation, search
m
 
Line 64: Line 64:
 
<tr>
 
<tr>
 
<td>5</td>
 
<td>5</td>
<td><math>x^3+a^{-1}tr_n(a^3x^9)</math></td>
+
<td><math>x^3+a^{-1}{\mathrm Tr}_n(a^3x^9)</math></td>
 
<td>Gold<math>(a=1)</math>
 
<td>Gold<math>(a=1)</math>
 
<math>N^\circ 3 (a=u)</math>
 
<math>N^\circ 3 (a=u)</math>
Line 79: Line 79:
 
<tr>
 
<tr>
 
<td>6</td>
 
<td>6</td>
<td><math>x^3+a^{-1}tr_n^3(a^3x^9+a^6x^{18})</math></td>
+
<td><math>x^3+a^{-1}{\mathrm Tr}_n^3(a^3x^9+a^6x^{18})</math></td>
 
<td>Gold<math>(a=1)</math>
 
<td>Gold<math>(a=1)</math>
 
<math>N^\circ 3 (a=u)</math>
 
<math>N^\circ 3 (a=u)</math>
Line 92: Line 92:
 
<tr>
 
<tr>
 
<td>7</td>
 
<td>7</td>
<td><math>x^3+a^{-1}tr_n^3(a^6x^{18}+a^{12}x^{36})</math></td>
+
<td><math>x^3+a^{-1}{\mathrm Tr}_n^3(a^6x^{18}+a^{12}x^{36})</math></td>
 
<td>Gold<math>(a=1)</math>
 
<td>Gold<math>(a=1)</math>
 
<math>N^\circ 3 (a=u)</math>
 
<math>N^\circ 3 (a=u)</math>

Latest revision as of 21:06, 10 July 2020

CCZ-equivalence of Families of APN Polynomials over GF(2^n) from the table (for n is equal or larger than 6 and equal or smaller than 11)

Functions*
1

Gold - - - - -
2

- - - - - -
3 New - - - New I (

New II (

-
4 - New - : Case I

: Case II

-
5 Gold

New New I

New II

New New I

New II

New
6 Gold

- - New - -
7 Gold

- - New - -
8

New - - - - -
9

- - - - -
10

- - - - -
11

- - New

- - -