Difference between revisions of "Boomerang uniformity"
(Created page with "=Background and definitions= The Boomerang attack, introduced in 1999 by Wagner <ref name="wagnerBoomerangAttack>Wagner D. The boomerang attack.In Lars R. Knudsen, editor, FSE...") |
m |
||
Line 16: | Line 16: | ||
** For <math>F'</math> an affine equivalent permutation, <math>F'=A_2\circ F\circ A_1</math>, we have <math>T_{F'}(a,b)=T_F(L_1(a),L_2^{-1}(b))</math>, with <math>L_i</math> the linear part of <math>A_i</math>. | ** For <math>F'</math> an affine equivalent permutation, <math>F'=A_2\circ F\circ A_1</math>, we have <math>T_{F'}(a,b)=T_F(L_1(a),L_2^{-1}(b))</math>, with <math>L_i</math> the linear part of <math>A_i</math>. | ||
** For the inverse we have <math>T_{F^{-1}}(a,b)=T_F(b,a)</math>. | ** For the inverse we have <math>T_{F^{-1}}(a,b)=T_F(b,a)</math>. | ||
− | * <math>\delta_F\le\beta_F</math> and <math>\delta_F=2</math> if and only if <math>\beta_F=2</math>. | + | * Relation with the differential uniformity: <math>\delta_F\le\beta_F</math> and <math>\delta_F=2</math> if and only if <math>\beta_F=2</math>. |
* <math>T_F(a,b)=|\{ (x,y) : F(x+a)+F(y+a)=b,F(x)+F(y)=b \}|</math>. | * <math>T_F(a,b)=|\{ (x,y) : F(x+a)+F(y+a)=b,F(x)+F(y)=b \}|</math>. | ||
* If <math>F</math> is a power permutation, then <math>\beta_F=\max_{b\neq0}T(1,b)</math>. | * If <math>F</math> is a power permutation, then <math>\beta_F=\max_{b\neq0}T(1,b)</math>. | ||
* If <math>F</math> is a quadratic permutation, then <math>\delta_F\le\beta_F\le\delta_F(\delta_F-1)</math>. | * If <math>F</math> is a quadratic permutation, then <math>\delta_F\le\beta_F\le\delta_F(\delta_F-1)</math>. |
Latest revision as of 10:46, 23 September 2019
Background and definitions
The Boomerang attack, introduced in 1999 by Wagner [1], is a cryptanalysis technique against block ciphers based on differential cryptanalysis. To study the resistance to this attack, Cid et al.[2] introduced the Boomerang Connectivity Table (BCT). Next, Boura and Canteaut[3] , introduced the notion of boomerang uniformity.
For a permutation , the Boomerang Connectivity Table (BCT) is given by a table ,
.
The boomerang uniformity of is the maximal value, i.e.
Main properties
For a permutation, the following properties on the boomerang uniformity were proven.
- The boomerang uniformity is invariant for inverse and affine equivalence but not for EA- and CCZ-equivalence.
- For an affine equivalent permutation, , we have , with the linear part of .
- For the inverse we have .
- Relation with the differential uniformity: and if and only if .
- .
- If is a power permutation, then .
- If is a quadratic permutation, then .