# Difference between revisions of "Boolean Functions"

m (→Equivalence of Boolean functions) |
|||

Line 77: | Line 77: | ||

=Equivalence of Boolean functions= | =Equivalence of Boolean functions= | ||

− | Two 𝑛-variable Boolean functions 𝑓,𝑔 are called <i>extended-affine equivalent</i> (shortly EA-equivalent) if there exists a linear automorphism 𝐿, an affine Boolean function 𝓁 and a vecor 𝑎 such that 𝑔(𝑥) = 𝑓(𝐿(𝑥)+𝑎)+𝓁(𝑥). | + | Two 𝑛-variable Boolean functions 𝑓,𝑔 are called <i>extended-affine equivalent</i> (shortly EA-equivalent) if there exists a linear automorphism 𝐿, an affine Boolean function 𝓁 and a vecor 𝑎 such that <center>𝑔(𝑥) = 𝑓(𝐿(𝑥)+𝑎)+𝓁(𝑥).</center> |

A parameter that is preserved by EA-equivalence is called <i>EA-invariant</i>. | A parameter that is preserved by EA-equivalence is called <i>EA-invariant</i>. |

## Revision as of 10:29, 27 September 2019

## Contents

# Introduction

Let 𝔽_{2}^{𝑛} be the vector space of dimension 𝑛 over the finite field with two elements.
The vector space can also be endowed with the structure of the field, the finite field with 2^{𝑛} elements, 𝔽_{2𝑛}.
A function is called a *Boolean function* in dimenstion 𝑛 (or *𝑛-variable Boolean function*).

Given , the support of *x* is the set .
The Hamming weight of 𝑥 is the size of its support ().
Similarly the Hamming weight of a Boolean function 𝑓 is the size of its support, i.e. the set .
The Hamming distance of two functions 𝑓,𝑔 is the size of the set .

# Representation of a Boolean function

There exist different ways to represent a Boolean function. A simple, but often not efficient, one is by its truth-table. For example consider the following truth-table for a 3-variable Boolean function 𝑓.

𝑥 | 𝑓(𝑥) | ||
---|---|---|---|

0 | 0 | 0 | 0 |

0 | 0 | 1 | 1 |

0 | 1 | 0 | 0 |

0 | 1 | 1 | 0 |

1 | 0 | 0 | 0 |

1 | 0 | 1 | 1 |

1 | 1 | 0 | 0 |

1 | 1 | 1 | 1 |

## Algebraic normal form

An 𝑛-variable Boolean function can be represented by a multivariate polynomial over 𝔽_{2} of the form

Such representation is unique and it is the * algebraic normal form* of 𝑓 (shortly ANF).

The degree of the ANF is called the * algebraic degree* of the function, 𝑑°𝑓=max { |𝐼| : 𝑎_{𝐼}≠0 }.

## Trace representation

We identify the vector space with the finite field and we consider 𝑓 an 𝑛-variable Boolean function of even weight (hence of algebraic degree at most 𝑛-1). The map admits a uinque representation as a univariate polynomial of the form

with Γ_{𝑛} set of integers obtained by choosing one element in each cyclotomic coset of 2 ( mod 2^{𝑛}-1), 𝘰(𝘫) size of the cyclotomic coset containing 𝘫, 𝘈_{𝘫} ∈ 𝔽_{2𝘰(𝘫)}, Tr_{𝔽2𝘰(𝘫)/𝔽2} trace function from 𝔽_{2𝘰(𝘫) to 𝔽2.
}

Such representation is also called the univariate representation .

𝑓 can also be simply presented in the form where 𝘗 is a polynomial over the finite field F_{2𝑛} but such representation is not unique, unless 𝘰(𝘫)=𝑛 for every 𝘫 such that 𝘈_{𝘫}≠0.

# The Walsh transform

The *Walsh transform* 𝑊_{𝑓} is the descrete Fourier transform of the sign function of 𝑓, i.e. (-1)^{𝑓(𝑥)}.
With an innner product in 𝔽_{2}^{𝑛} 𝑥·𝑦, the value of 𝑊_{𝑓} at 𝑢∈𝔽_{2}^{𝑛} is the following sum (over the integers)

The set is the *Walsh support* of 𝑓.

## Properties of the Walsh transform

For every 𝑛-variable Boolean function 𝑓 we have the following relations.

- Inverse Walsh transform: for any element 𝑥 of 𝔽
_{2}^{𝑛}we have - Parseval's relation:
- Poisson summation formula: for any vector subspace 𝐸 of 𝔽
_{2}^{𝑛}and for any elements 𝑎,𝑏 in 𝔽_{2}^{𝑛}for 𝐸 ^{⟂}the orthogonal subspace of 𝐸,{𝑢∈𝔽_{2}^{𝑛}: 𝑢·𝑥=0, for all 𝑥∈𝐸}.

# Equivalence of Boolean functions

Two 𝑛-variable Boolean functions 𝑓,𝑔 are called *extended-affine equivalent* (shortly EA-equivalent) if there exists a linear automorphism 𝐿, an affine Boolean function 𝓁 and a vecor 𝑎 such that

A parameter that is preserved by EA-equivalence is called *EA-invariant*.